
GENODE
Operating System Framework 24.11

Applications
Johannes Schlatow

Contents

Contents

1 Introduction 4

2 Getting started with Goa 5
2.1 Installation . 6
2.2 A first example, using a plain old Makefile 7
2.3 A second example, using CMake . 11
2.4 Running the scenario on Sculpt OS . 16

3 Foundations 17
3.1 Genode’s init component . 18
3.2 Component API . 20

3.2.1 Native Genode components . 20
3.2.2 Libc components . 20
3.2.3 POSIX components . 21

3.3 C runtime and virtual file system . 22
3.3.1 Libc configuration . 22
3.3.2 VFS configuration . 23
3.3.3 VFS plugins . 24

3.4 Networking . 29
3.4.1 TCP/IP stacks . 29
3.4.2 NIC Router . 30
3.4.3 Example: Virtual networking with Goa 32
3.4.4 Example: Cascaded NIC routers 33

3.5 Package management . 35
3.6 Runtime configuration . 37
3.7 Graphical User Interfaces . 38

3.7.1 SDL . 38
3.7.2 Qt (5/6) . 38
3.7.3 Mobile SDK based on Ubuntu/Lomiri UI Toolkit 39
3.7.4 Light and Versatile Graphics Library (LVGL) 39

4 Development & Debugging 41
4.1 Adding debug info files . 42
4.2 Using backtraces . 43
4.3 Debugging with Goa on base-linux . 48
4.4 Using Sculpt as a remote test target . 53
4.5 Further reading . 57

4.5.1 Using a VNC server on a remote test target 57
4.5.2 On-target debugging with GDB . 57
4.5.3 Performance analysis . 57

2

Contents

5 Tutorials 58
5.1 Sticking together a little Unix . 59
5.2 Exporting and publishing . 86
5.3 Writing a VFS plugin for network-packet access 97
5.4 Porting Lomiri Calculator App . 119

This work is licensed under the Creative Commons Attribution +
ShareAlike License (CC-BY-SA). To view a copy of the license, visit
http://creativecommons.org/licenses/by-sa/4.0/legalcode

3

1 Introduction

This document complements the Genode Foundations book with application-level top-
ics. It is primarily intended for application developers. Before studying the Genode
Applications material, it is recommended to give the Genode Foundations book a read.
The book can be downloaded at https://genode.org.

Another guide worth reading is the Sculpt OS guide1. Sculpt OS is one particular in-
carnation of the Genode OS Framework that puts the user in the position of full control.
With Sculpt OS, you are leaving the well-known world of Linux. It is therefore worth
familiarizing yourself with these new grounds before building applications for it.

This document features a practical guide for developing and porting applications
to Genode. The material leverages the Goa software development kit (SDK), which
streamlines the application development for the Genode OS Framework and Sculpt OS
in particular.

Goa SDK tool

https://github.com/genodelabs/goa

Chapter 2 demonstrates the use of the Goa tool in form of a Getting Started guide.
Chapter 3 recapitulates the principles of Genode’s architecture as well as its most es-
sential libraries, components, and tooling for application developers. Chapter 4 pro-
vides assistance when it comes to debugging Genode applications. Finally, Chapter
5 completes the document by a collection of tutorials and stories on application port-
ing/development.

1https://genode.org/documentation/articles/sculpt-24-10

4

https://genode.org
https://genode.org/documentation/articles/sculpt-24-10
https://github.com/genodelabs/goa
https://genode.org/documentation/articles/sculpt-24-10

2 Getting started with Goa

This section is based on Norman Feske’s Goa article1 at https://genodians.org.
The development of applications for Genode used to require a lot of learning about

Genode’s way of organizing source code, the framework’s custom build system, and
the use of run scripts. The Goa tool aims at largely removing these burdens from appli-
cation developers.

In contrast to the tools that come with Genode, which were designed for developing
complete systems, Goa2 is focused on the development of individual applications. In a
nutshell, it streamlines the following tasks:

1. The porting of 3rd-party software to Genode, which typically involves

• Downloading 3rd-party source code via Git, Subversion, or in the form of
archives,

• Applying patches to the downloaded source code, and

• Keeping track of changes locally made to the downloaded source code.

2. Building software using standard build tools like CMake, alleviating the need
to deal with Genode’s custom build system. Goa takes care of automatically in-
stalling the required Genode APIs and supplying the right parameters to the build
system so that Genode executables are produced.

3. Rapidly testing the software directly on the developer’s Linux host system. Goa
automatically downloads Genode components needed for the test scenario.

4. Since Genode executables are binary-compatible between Linux and microker-
nels, the same binaries as tested on Linux can be deployed on top of the other
kernels supported by Genode. Goa takes care of exporting the software in the
format expected by Genode’s package management.

5. Publishing (archiving and cryptographically signing) the software so that it be-
comes available to other Genode users, in particular users of Sculpt OS.

1https://genodians.org/nfeske/2019-11-24-goa
2https://github.com/genodelabs/goa

5

https://genodians.org/nfeske/2019-11-24-goa
https://genodians.org
https://github.com/genodelabs/goa
https://genodians.org/nfeske/2019-11-24-goa
https://github.com/genodelabs/goa

2.1 Installation

2.1 Installation

1. Install the latest Genode tool chain on a GNU/Linux OS on a 64-bit x86 PC. It is
recommended to use the latest long-term support (LTS) version of Ubuntu. Make
sure that your installation satisfies the following requirements.

• libSDL-dev needed to run system scenarios directly on your host OS,

• tclsh and expect needed by the tools,

• xmllint for validating configurations,

Instructions for installing the Genode tool chain are available at https://genode.
org/download/tool-chain.

2. Clone the Goa repository:

git clone https://github.com/genodelabs/goa.git

The following steps refer to the directory of the clone as <goa-dir>.

3. Enable your shell to locate the goa tool by either

• Creating a symbolic link in one of your shell’s binary-search locations (e. g.,
if you use a bin/ directory in your home directory, issue ln -s <goa-
dir>/bin/goa ~/bin/), or alternatively

• Add <goa-dir>/bin/ to your PATH environment variable, e. g., (replace
<goa-dir> with the absolute path of your clone):

export PATH=$PATH:<goa-dir>/bin

4. Optionally, enable bash completion by adding the following line to your ~/.bashrc
file:

source <goa-dir>/share/bash-completion/goa

Please feel welcome to explore Goa on your own. A good starting point would be the
built-in help command:

goa help

6

https://genode.org/download/tool-chain
https://genode.org/download/tool-chain

2.2 A first example, using a plain old Makefile

2.2 A first example, using a plain old Makefile

Let’s say, you want to build a hello-world application that uses the raw Genode API
with no libc whatsoever.

First, create a project directory, let’s call it “hello”:

$ mkdir hello
hello$ cd hello

By convention, the project name corresponds to the name of the directory. Source
codes are stored in a src/ subdirectory. Let’s create a file at src/hello.cc with the following
content:

#include <base/log.h>
#include <base/component.h>

void Component::construct(Genode::Env &)
{
Genode::log("Hello");

}

Besides the hello.cc file, let’s create a Makefile at src/Makefile with the following content:

hello: hello.cc

Now, let’s give goa a first try:

hello$ goa build

Goa responds with the following message:

[hello] Error: hello has a ’src’ directory but lacks an ’artifacts’ file.
You may start with an empty file.

The so-called artifacts file tells Goa about the expected end result of the build pro-
cess. Even though we already know from our Makefile that our only build artifact will
be the executable binary called “hello”, let’s follow Goa’s advise of starting with an
empty artifacts file. Note, you may consult goa help artifacts for more details on
the artifacts file.

7

2.2 A first example, using a plain old Makefile

hello$ touch artifacts

As a notable side effect of the goa build command, Goa has created a new directory
called var/ within the project directory. The var/ directory is the designated place for
generated files such as the build directory.

Upon the next attempt of issuing the goa build command, now with an artifacts file
in place, Goa attempts to compile our program but with pretty limited success:

hello.cc:1:10: fatal error: base/log.h: No such file or directory
#include <base/log.h>

^~~~~~~~~~~~
compilation terminated.
make: *** [hello] Error 1
[hello:make] <builtin>: recipe for target ’hello’ failed
Error: build via make failed

Our program tries to include a header file that is nowhere to be found. To resolve this
problem, one can tell Goa that the project needs to use the Genode base API, by placing
a file named used_apis with the following content into the project directory.

genodelabs/api/base

This line tells Goa that the project depends on Genode’s base API, which features the
base/log.h and base/component.h headers. When issuing the command goa build again,
you see the following message:

download genodelabs/api/base/2023-10-24.tar.xz
download genodelabs/api/base/2023-10-24.tar.xz.sig

Goa automatically downloaded the base API and installed it into a fresh depot at
var/depot/genodelabs/api/base/2023-10-24/. But not only that, it also re-attempted the build
of the program. If you take a look at var/build/x86_64/, you will see the hello executable.
If the output was too unspectacular for your taste, you may append the --verbose
argument to the goa build command to see more details about the steps taken.

To run the program, one needs to tell Goa, which part of the build artifacts are rele-
vant. In our case, it’s the hello executable binary. You can declare this information in
your artifacts file by adding the following line. It refers to the respective file relative to
the var/build/x86_64/ directory.

hello

8

2.2 A first example, using a plain old Makefile

If you issue the goa build command again, you can see that this file appears at
var/bin/x86_64/hello. The content of the bin directory is meant for the integration into a
Genode scenario.

Speaking of a Genode scenario, to run the program within a Genode system, you
have to define the “contract” between the program and the surrounding system. This
contract has the form of a runtime package. Let’s create one with the name “hello”:

hello$ mkdir -p pkg/hello

A runtime package needs at least two files, a README file and a runtime file. The
README file should give brief information about the purpose of the Genode subsys-
tem for human readers. The runtime file contains the contractual information. Create a
file pkg/hello/runtime with the following content:

<runtime ram="1M" caps="100" binary="hello">
<config/>
<content>
<rom label="hello"/>

</content>
</runtime>

This file declares the binary you want to start, how much RAM and capabilities the
subsystem expects, configuration information passed to the subsystem, and the content
of the package. In this case, you only have a single ROM module for the binary called
“hello”.

Note that Goa’s built-in help command provides more details on the structure of
runtime files.

goa help runtime

For running the scenario, one can use the goa run command:

hello$ goa run

9

2.2 A first example, using a plain old Makefile

download genodelabs/bin/x86_64/base-linux/2023-10-24.tar.xz
download genodelabs/bin/x86_64/base-linux/2023-10-24.tar.xz.sig
download genodelabs/bin/x86_64/init/2023-10-24.tar.xz
download genodelabs/bin/x86_64/init/2023-10-24.tar.xz.sig
download genodelabs/src/base-linux/2023-10-24.tar.xz
download genodelabs/src/base-linux/2023-10-24.tar.xz.sig
download genodelabs/src/init/2023-10-24.tar.xz
download genodelabs/src/init/2023-10-24.tar.xz.sig
download genodelabs/api/os/2023-08-21.tar.xz
download genodelabs/api/os/2023-08-21.tar.xz.sig
download genodelabs/api/report_session/2023-05-26.tar.xz
download genodelabs/api/report_session/2023-05-26.tar.xz.sig
download genodelabs/api/sandbox/2023-10-03.tar.xz
download genodelabs/api/sandbox/2023-10-03.tar.xz.sig
download genodelabs/api/timer_session/2023-10-03.tar.xz
download genodelabs/api/timer_session/2023-10-03.tar.xz.sig
Genode sculpt-23.10
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> hello] Hello

You can see that Goa automatically installed the dependencies needed to execute the
runtime package, integrates a Genode scenario, and executes it directly on Linux. If
you switch to another terminal, you can see the Genode processes:

$ ps a | grep Genode

8646 pts/3 Sl+ 0:00 [Genode] init
8649 pts/3 Sl+ 0:00 [Genode] init -> hello
8650 pts/3 Sl+ 0:02 [Genode] init -> timer

You can cancel the execution of the Genode scenario via Control-C.

10

2.3 A second example, using CMake

2.3 A second example, using CMake

As another step, let us create a new project that executes the 2nd step of the excellent
CMake tutorial1. Let’s call the project “cmake_step2”. Instead of copying the code
into the cmake_step2/src/ directory, let us better tell Goa to download the code from the
original tutorial. This can be done by creating an import file in the project directory.
Create the file cmake_step2/import with the following content. Please have a look at goa
help import for a detailed explanation.

LICENSE := BSD
VERSION := master
DOWNLOADS := cmake_step2.sparse-git

URL(cmake_step2) := https://github.com/Kitware/CMake
REV(cmake_step2) := HEAD
DIR(cmake_step2) := src
SPARSE_PATH(cmake_step2) := Help/guide/tutorial/Step2

This import file describes the download of only the specified subdirectory of the
CMake project from GitHub. Let’s give it a try:

cmake_step2$ goa import
import download https://github.com/Kitware/CMake/trunk/Help/guide/tutorial/Step2
import generate import.hash

After the command finished, you find the source code sitting nicely in a new src/
directory. Let’s try to build it just after creating an empty artifacts file.

cmake_step2$ touch artifacts
cmake_step2$ goa build

1https://cmake.org/cmake-tutorial/

11

https://cmake.org/cmake-tutorial/
https://cmake.org/cmake-tutorial/

2.3 A second example, using CMake

[cmake_step2:cmake] -- The C compiler identification is GNU 12.3.0
[cmake_step2:cmake] -- The CXX compiler identification is GNU 12.3.0
[cmake_step2:cmake] -- Detecting C compiler ABI info
[cmake_step2:cmake] -- Detecting C compiler ABI info - done
[cmake_step2:cmake] -- Check for working C compiler:

/usr/local/genode/tool/23.05/bin/genode-x86-gcc - skipped
[cmake_step2:cmake] -- Detecting C compile features
[cmake_step2:cmake] -- Detecting C compile features - done
[cmake_step2:cmake] -- Detecting CXX compiler ABI info
[cmake_step2:cmake] -- Detecting CXX compiler ABI info - done
[cmake_step2:cmake] -- Check for working CXX compiler:

/usr/local/genode/tool/23.05/bin/genode-x86-g++ - skipped
[cmake_step2:cmake] -- Detecting CXX compile features
[cmake_step2:cmake] -- Detecting CXX compile features - done
[cmake_step2:cmake] -- Configuring done
[cmake_step2:cmake] -- Generating done
[cmake_step2:cmake] -- Build files have been written to: .../var/build/x86_64
[cmake_step2:cmake] Scanning dependencies of target Tutorial
[cmake_step2:cmake] [50%] Building CXX object

CMakeFiles/Tutorial.dir/tutorial.cxx.obj
.../cmake_step2/src/tutorial.cxx:2:10: fatal error:
cmath: No such file or directory

2 | #include <cmath>
| ^~~~~~~

compilation terminated.

Apparently, the example requires the standard C++ library. You can supply this API
to the project by creating a used_apis file with the following content:

genodelabs/api/posix
genodelabs/api/libc
genodelabs/api/stdcxx

The posix API is needed because - unlike a raw Genode component - the program
starts at a main function. The libc is needed as a dependency of the standard C++
library.

When issuing the goa build command again, you see that Goa downloads the re-
quired APIs and successfully builds the example program:

cmake_step2$ goa build

12

2.3 A second example, using CMake

download genodelabs/api/libc/2023-10-03.tar.xz
download genodelabs/api/libc/2023-10-03.tar.xz.sig
download genodelabs/api/posix/2020-05-17.tar.xz
download genodelabs/api/posix/2020-05-17.tar.xz.sig
download genodelabs/api/stdcxx/2023-10-24.tar.xz
download genodelabs/api/stdcxx/2023-10-24.tar.xz.sig
[cmake_step2:cmake] -- Configuring done
[cmake_step2:cmake] -- Generating done
[cmake_step2:cmake] -- Build files have been written to: .../var/build/x86_64
[cmake_step2:cmake] [50%] Building CXX object

CMakeFiles/Tutorial.dir/tutorial.cxx.obj
[cmake_step2:cmake] [100%] Linking CXX executable Tutorial
[cmake_step2:cmake] [100%] Built target Tutorial

The resulting executable binary can be found at var/build/x86_64/Tutorial. Let’s de-
clare it a build artifact by mentioning it in the artifacts by adding the following line.

Tutorial

To run the program, you need a runtime package that is slightly more advanced
than the first hello example. This time, you need to declare that the runtime requires
content from other depot archives in addition to your program by creating a file pkg/c-
make_step2/archives with the following content:

genodelabs/src/posix
genodelabs/src/libc
genodelabs/src/vfs
genodelabs/src/stdcxx

This way, the subsystem incorporates the shared libraries found in those depot
archives. A suitable pkg/cmake_step2/runtime for running the program within a Genode
scenario looks like this:

13

2.3 A second example, using CMake

<runtime ram="10M" caps="1000" binary="Tutorial">

<config>
<libc stdout="/dev/log" stderr="/dev/log"/>
<vfs>
<dir name="dev">
<log/>

</dir>
</vfs>
<arg value="Tutorial"/>
<arg value="24"/>

</config>

<content>
<rom label="Tutorial"/>
<rom label="posix.lib.so"/>
<rom label="libc.lib.so"/>
<rom label="libm.lib.so"/>
<rom label="stdcxx.lib.so"/>
<rom label="vfs.lib.so"/>

</content>
</runtime>

Since the tutorial uses the C runtime, you have to supply a configuration that defines
how the virtual file system of the component looks like, and where the program’s stan-
dard output should go. The runtime also specifies the first and second arguments of the
POSIX program as “Tutorial” (name of the program) and “24” as its actual argument.
The <content> lists all ROM modules required.

With this runtime package in place, let’s give the Tutorial a run:

14

2.3 A second example, using CMake

cmake_step2/$ goa run
[cmake_step2:cmake] -- Configuring done
[cmake_step2:cmake] -- Generating done
[cmake_step2:cmake] -- Build files have been written to: .../var/build/x86_64
[cmake_step2:cmake] [100%] Built target Tutorial
download genodelabs/bin/x86_64/libc/2023-10-24.tar.xz
download genodelabs/bin/x86_64/libc/2023-10-24.tar.xz.sig
download genodelabs/bin/x86_64/posix/2023-10-24.tar.xz
download genodelabs/bin/x86_64/posix/2023-10-24.tar.xz.sig
download genodelabs/bin/x86_64/stdcxx/2023-10-24.tar.xz
download genodelabs/bin/x86_64/stdcxx/2023-10-24.tar.xz.sig
download genodelabs/bin/x86_64/vfs/2023-10-24.tar.xz
download genodelabs/bin/x86_64/vfs/2023-10-24.tar.xz.sig
...
download genodelabs/api/sandbox/2023-10-03.tar.xz.sig
Genode sculpt-23.10
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> cmake_step2] The square root of 24 is 4.89898
[init] child "cmake_step2" exited with exit value 0

You see that Goa takes care of downloading all dependencies needed to host the
subsystem and subsequently executes the scenario. The program built by the tutorial
prints the result “The square root of 24 is 4.89898”.

15

2.4 Running the scenario on Sculpt OS

2.4 Running the scenario on Sculpt OS

As icing on the cake, let’s give the scenario a spin on a microkernel. Sculpt OS is a
Genode-based general-purpose OS compatible with commodity PC hardware. It is
used as day-to-day OS by the Genode developers and can be downloaded as ready-
to-use system image:

Sculpt OS download

https://genode.org/download/sculpt

The official Sculpt image is equipped with a specifically tailored preset called “goa
testbed” which allows Goa to use the system as a remote test target. Simply hook up
the Sculpt system to your wifi or your wired network, and enable the goa testbed preset.
Note down the IP address and execute the following command on your development
system:

cmake_step2/$ goa run --target sculpt --target-opt-sculpt-server <sculpt-ip>
[cmake_step2:cmake] -- Configuring done (0.0s)
[cmake_step2:cmake] -- Generating done (0.0s)
[cmake_step2:cmake] -- Build files have been written to: .../var/build/x86_64
[cmake_step2:cmake] [100%] Built target Tutorial
uploaded libm.lib.so (local change)
uploaded stdcxx.lib.so (local change)
uploaded vfs.lib.so (local change)
uploaded Tutorial (local change)
uploaded posix.lib.so (local change)
uploaded libc.lib.so (local change)
uploaded config (local change)
Trying 10.0.1.1...
Connected to 10.0.1.1.
Escape character is ’^]’.
[init -> cmake_step2] The square root of 24 is 4.89898
[init] child "cmake_step2" exited with exit value 0

For more details, please consult Goa’s built-in help command goa help targets or
refer to Section 4.4.

16

https://genode.org/download/sculpt

3 Foundations

This chapter summarizes the most essential foundations of the Genode OS Framework.
For a more detailed view, please refer to the Genode Foundations book available at
https://genode.org.

17

https://genode.org

3.1 Genode’s init component

3.1 Genode’s init component

Genode’s system architecture follows a recursive structure in which a component may
invest a part of its resource budget in order to start child components. A detailed ac-
count of this is given in Section “Recursive system structure” of the Genode Founda-
tions book.

The standard component used for nesting subsystems in Genode is the init compo-
nent. The configuration of the init component determines what child components to
start and how resources are assigned to them. A detailed account of init’s configuration
is given in Chapter “System configuration” of the Genode Foundations book.

When executing goa run or installing a runtime package on Sculpt OS, the binary
specified in its runtime file is added as a child component to a Goa-managed or Sculpt-
managed init component. The runtime package may either consist of a single compo-
nent binary or make use of the init component itself to start multiple components in its
subsystem. See Section 5.1 for an example.

Besides starting components and delegating resources, a parent component such as
init also establishes communication channels between its child components. Any com-
ponent may inform its parent about a service that it provides. Other components are
then able to request access to this service. Both sides adhere to a predetermined session
interface. A list of common session interfaces is provided in Section “Common session
interfaces” of the Genode Foundations book.

One of the most basic session interfaces is the ROM session. It provides read-only ac-
cess to binary or textual data. For instance, executable binaries and shared libraries are
provided as ROM modules. Moreover, Genode components typically access a “config”
ROM module, which contains the component’s configuration as XML. The configura-
tion of Genode’s init component, e. g., contains a <start> node for each child component
to be started. For illustration, let’s have a look at a simple example:

<start name="fs_rom">
<resource name="RAM" quantum="10M"/>
<provides>
<service name="ROM"/>

</provides>
<config/>
<route>
<service name="File_system"> <child name="vfs"/> </service>
<any-service> <parent/> </any-service>

</route>
</start>

• The name attribute of the <start> node refers the name of the child component
and is identical to the binary name. A different binary name can be specified by
adding a <binary> sub node.

18

3.1 Genode’s init component

• The <resource> node specifies the amount of RAM delegated to the component.

• The <provides> node contains the list of session interfaces provided by the com-
ponent.

• The <config> node specifies the content of the component’s config ROM.

• The <route> node contains routing information for the requested services. In this
example, the File_system session is routed to the child component named “vfs”.
All other services are routed to the parent component.

Note that session requests are accompanied by a session label. In order to make ses-
sion requests distinguishable by the providing component, init adds the name of the
requesting component as a prefix to the session label and separates the parts by " →

". One may use session labels to apply more fine-grained routing rules.

Further reading For more details, please consult the following sections of the Genode
Foundations book available on https://genode.org.

• Section “Recursive system structure”

• Section “The init component”

• Section “Common session interfaces”

19

https://genode.org

3.2 Component API

3.2 Component API

Genode components can be classified into the following categories depending on the
used API: native, libc and POSIX.

3.2.1 Native Genode components

#include <base/component.h>
#include <base/log.h>

void Component::construct(Genode::Env &)
{
Genode::log("Hello world");

}

The base/component.h header contains the interface each component must implement.
The construct function is called by the components execution environment to initial-
ize the component. The interface to the execution environment is passed as argument.
This interface allows the application code to interact with the outside world. The sim-
ple example above merely produces a log message. The log function is defined in the
base/log.h header. The component does not exit after the construct function returns.
Instead, it becomes ready to respond to requests or signals originating from other com-
ponents. The example above does not interact with other components though. Hence,
it will just keep waiting indefinitely.

3.2.2 Libc components

A libc-based component is not different from a regular Genode component and re-
acts on events from the surrounding system. The crucial difference lies in the seman-
tics of the POSIX file operations, which may block on read or select. Therefore, the
Component::construct function is not implemented in the component code but in the
libc. On startup, this function prepares the C runtime, including the virtual file system,
before executing the application (or libc-using component) code. The actual applica-
tion is then entered via Libc::Component::construct on its own application context
(stack and register set). Consequently, Genode components that use the libc have to im-
plement the Libc::Component::construct function. The application context enables
the libc to suspend and resume the execution of the application at any appropriate time,
e. g., when waiting in select for a file descriptor to become readable.

20

3.2 Component API

#include <libc/component.h>
#include <stdio.h>

void Libc::Component::construct(Libc::Env &)
{
Libc::with_libc([] () {
printf("Hello world\n");

});
}

When using libc functions in the component, the code must indicate this intention by
wrapping code into Libc::with_libc defined as a function taking a lambda-function
argument in libc/component.h. This ensures that code from the libc is executed exclu-
sively by the application context and, therefore, is suspendable.

Section 3.3 provides more details on Genode’s C runtime and virtual file system.

3.2.3 POSIX components

By using Genode’s posix library, it is possible to build applications that use the well-
known main() function.

#include <stdio.h>

int main(int argc, char **argv)
{
printf("Hello POSIX\n");
return 0;

}

Internally, the posix library uses libc/component.h and therefore requires configuration
of the C runtime and virtual file system as explained in the following section. In addi-
tion, the posix libary looks for <arg> nodes in the component’s config ROM in order to
fill the argv array. Section 2.3 has already shown an example for this.

21

3.3 C runtime and virtual file system

3.3 C runtime and virtual file system

Genode’s C runtime bases on FreeBSD’s libc and allows running Unix/POSIX-like ap-
plications. However, as a consequence of Genode’s architecture, there is no global file
system in Genode. Instead, every component has its own virtual file system, i. e. its
own sandboxed view. Moreover, since files in Genode are no first-level citizens, special
files such as sockets must be emulated.

The individual virtual file system (VFS) of a component is provided by Genode’s
vfs library. This library evaluates the <vfs> node of the component’s configuration
and instantiates the file-system structures accordingly. A plugin mechanism allows on-
demand loading of VFS plugins, which are used to emulate special files or file systems.

If you have followed the tutorial in Section 2.3, you will have already seen the <libc>
and <vfs> configuration nodes in action. This section explains their use in greater de-
tail. For more information on writing VFS plugins, please refer to the tutorial in Section
5.3.

3.3.1 Libc configuration

Genode’s libc library evaluates the <libc> node of the component’s configuration. The
<libc> node supports the following (optional) attributes:

stdout

The stdout attribute defines the file path in the component’s VFS that is used for
standard output. It is typically directed to a <log>, <null> or <terminal> file.

stderr

The stderr attribute defines the file path in the component’s VFS that is used for
error messages from libc code.

stdin

The stdin attribute defines the file path in the component’s VFS that is used for
standard input. It is typically directed to a <log>, <null> or <terminal> file.

rtc

The rtc attribute defines a file path in the component’s VFS that provides real-
time-clock data. It is typically directed to an <rtc> file or an <inline> file.

pipe

The pipe attribute defines a path to a <pipe> plugin in the component’s VFS and
thereby enables the use of POSIX pipes for inter-component communication.

socket

22

3.3 C runtime and virtual file system

The socket attribute defines a path to a socket file system in the component’s VFS.
Genode’s C runtime maps the BSD socket API to VFS operations in the socket file
system as provided by the IP-stack VFS plugins <lwip> and <lxip>.

In addition to these attributes, the <libc> node supports the following (optional) sub
nodes.

<pthread>

The <pthread> sub node defines the placement strategy of pthreads to CPUs. By
default, the libc uses round-robin assignment of pthreads to CPUs. This is equal to
<pthread placement=“all-cpus”/>. By using the “manual” placement strat-
egy, one can manually tune the placement, e. g.:

<libc>
<pthread placement="manual">
<thread id="0" cpu="0"/> <!-- pthread.0 placed on CPU 0 -->
<thread id="1" cpu="2"/> <!-- pthread.1 placed on CPU 2 -->

</pthread>
</libc>

3.3.2 VFS configuration

Genode’s VFS library evaluates the <vfs> node within the component’s configuration.
Inside the <vfs> node, one can specify an arbitrary directory structure by using nested
<dir> nodes. On each level, files and subordinate file systems can be instantiated. The
most basic types of these are <inline>, <rom> and <ram>. Let’s have a look at an
example:

<config>
<vfs>
<dir name="tmp">
<inline name="foobar">Hello!</inline>
<rom name="config" binary="false"/>
<ram/>

</dir>
</vfs>

</config>

The above config specifies a /tmp/ directory with a file foobar that has the statically
defined content “Hello!”. Moreover, the directory also contains the read-only config
file, which gets its content from the config ROM module. The <ram> node instructs
the VFS library to also set up a RAM file system inside /tmp/, much like the well-known
tmpfs from Unix-like systems.

23

3.3 C runtime and virtual file system

The above example illustrates how the VFS is able to provide access to Genode ses-
sion interfaces (here: ROM session) via well-known file operations. As another exam-
ple, one can also integrate a file-system session into a VFS by using the <fs> node:

<config>
<vfs> <fs/> </vfs>

</config>

Vice versa, the VFS component provides its VFS in form of a file-system session to
other components. This enables sharing of a particular VFS between several compo-
nents and even allows cascading VFS components.

Complete usage examples are available in the examples/vfs directory of the Goa repos-
itory.

3.3.3 VFS plugins

The VFS library comes with various built-in file-system plugins and, moreover, is ex-
tensible via a plugin-loading mechanism.

Built-in VFS plugins The VFS library has the following built-in single-file systems.
Every single-file system has an optional name attribute that specifies the name of the
file. If this attribute is omitted, the XML node type will be used as file name.

<inline name=“inline”></inline>

Adds a read-only text file. The content of the <inline> node specifies the file
content.

<rom name=“rom” label="<name>" binary=“yes”/>

Includes a ROM module as a read-only file. The label attribute specifies the ROM
session label. If omitted, the name will be used as ROM label.

<log name=“log” label=""/>

Makes a LOG session available as a file. A label attribute specifies the session
label. Note, read operations on the log file will block indefinitely.

<null name=“null”/>

Instantiates a file that mimics the behaviour of /dev/null known from Unix-like
systems.

<zero name=“zero” size=“0”/>

Instantiates a file that mimics the behaviour of /dev/zero known from Unix-like
systems. The optional size attribute limits the number of bytes that can be read
from the file. A value of 0 indicates there is no limit.

24

3.3 C runtime and virtual file system

<rtc name=“rtc”/>

Makes an RTC session available as a read-only file. Read operations to this file
will return the current date and time in the format %Y-%m-%d %H:%M:%S\n.

<terminal name=“terminal” label="" raw=“no”/>

Makes a Terminal session available as a file. The label attribute specifies the op-
tional session label. The raw attribute can be set to “yes” in order to ignore control
characters.

<symlink name=“symlink” target=""/>

Adds a symbolic link to the file specified by the target attribute.

<block name=“block” label="" block_buffer_count=“1”/>

Makes a Block session available as a file. The label attribute specifies the optional
session label. The block_buffer_count attribute sets the size of the internal block
buffer.

Furthermore, the VFS library has the following built-in subordinate file systems:

<ram>

Instantiates a temporary file system that stores all data in RAM much like a tmpfs
known from Unix-like systems.

<fs label="" root="/" writeable=“yes” buffer_size=“128K”>

Makes a file-system session available. The label attributes specifies the optional
session label. The root attribute specifies the root directory of the session. Fur-
thermore, the file system can be set to read only via the writeable attribute. The
buffer_size attribute sets the size of the session’s TX buffer.

<tar name="">

Makes the content of a tar archive available as a read-only file system. The name
attribute specifies the label of the ROM module providing the archive data.

External VFS plugins In addition to the aforementioned built-in plugins, the VFS
library tries to load additional plugins from shared libraries. For any unknown XML
node found in its configuration, the VFS library looks for a shared library file named
vfs_<node_name>.lib.so. The VFS plugin libraries are typically found in similarly named
depot archives src/vfs_<node_name>. A tutorial for writing VFS plugins is available in
Section 5.3.

There are the following single-file system plugins. As above, the optional name at-
tribute can be used to change the file name.

25

3.3 C runtime and virtual file system

<jitterentropy name=“jitterentropy”/>

Provides a random number generator based on CPU jitter. It is typically used for
emulation of /dev/random and /dev/urandom.

<oss name=“oss” play_enabled=“yes” record_enabled=“yes”/>

Makes Record and Play sessions available as a file suitable for emulation of /de-
v/dsp. For more details, please consult its README1.

<gpu/>

Makes GPU session signalling available as file operations. This is currently used
by the Mesa library. Any Mesa application must therefore have a /dev/gpu in its
VFS.

<capture name=“capture” label=""/>

Provides access to a Capture session. Reading from this file delivers the pixel
data of a 640x480 image with 4 bytes per pixel, which is mainly useful to receive
images from a webcam. The optional label attribute specifies the session label.

<tap name=“tap” label="" mode=“nic” mac="...”/>

Makes a NIC or Uplink session available as a file for emulation of /dev/tap devices.
The label attribute specifies an optional session label. When setting the mode at-
tribute to “uplink”, the plugin opens an Uplink session instead of a NIC session.
In this case, the mac attribute should be used to set the default MAC address. For
more details, please refer to Section 5.3 or the plugin’s README2.

Furthermore, the following plugins for subordinate file systems are available:

<import overwrite=“no”></import>

The import plugin defines an entire temporary file system that is copied to the
root of the main VFS. Existing files remain untouched unless the overwrite at-
tribute has been set to “yes”.

<audit label=“audit” path="...”/>

The audit plugin relays all file system accesses to the specified path while writing
a corresponding message to a LOG session. The plugin uses the value of the label
attribute as LOG session label.

<pipe/>

The pipe plugin provides a VFS backend for supporting POSIX pipes and for
inter-component communication. Named pipes can be created by adding <fifo

1https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/oss/README
2https://github.com/genodelabs/genode/blob/master/repos/os/src/lib/vfs/tap/README

26

https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/oss/README
https://github.com/genodelabs/genode/blob/master/repos/os/src/lib/vfs/tap/README
https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/oss/README
https://github.com/genodelabs/genode/blob/master/repos/os/src/lib/vfs/tap/README

3.3 C runtime and virtual file system

name="...”/> nodes inside the <pipe> node. For more details, please refer to
the plugin’s README1.

<trace ram="...”/>

The trace plugin provides access to Genode’s TRACE session. The mandatory ram
attribute specifies the session quota. For more details, please refer to the plugin’s
README2.

<ttf path="...” size_px=“16.0” cache=""/>

The ttf plugin provides the pixel data of a TTF font. The path attribute specifies
the path to the ttf file inside the VFS. The cache attribute can be used to limit the
maximum number of cached bytes. For a usage example, please have a look at
the fonts_fs raw archive3.

<lxip dhcp=“false” ip_addr="...” netmask="...” gateway="...” nameserver="...”/>

The lxip plugin provides a socket file system and maps its file operations to the
Linux IP stack backed by a NIC session. The plugin either uses DHCP or a static
configuration according to the provided attributes.

<lwip dhcp=“false” label=“lwip” .../>

The lwip plugin provides a socket file system and maps its file operations to the
Lightweight IP stack backed by a NIC session. The plugin accepts the same at-
tributes as the lxip plugin to enable DHCP or set a static IP configuration. In
addition, the label attribute can be used to change the NIC session label.

<rump fs="...” ram="...” writeable=“yes”/>

The rump plugin provides a persistent file system that is backed by a Block ses-
sion. The fs attribute determines the type of the file system (“ext2fs”, “msdos” or
“cd9660”). The mandatory ram attribute limits the amount of RAM that is used
by the plugin. The file system can be set to read-only via the writeable attribute.

<fatfs/>

The fatfs plugin provides a persistent file system that is backed by a Block session.
It currently supports FAT and exFAT file systems.

1https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/pipe/README
2https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/trace/README
3https://github.com/genodelabs/genode/blob/master/repos/gems/recipes/raw/fonts_fs/fonts_

fs.config

27

https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/pipe/README
https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/trace/README
https://github.com/genodelabs/genode/blob/master/repos/gems/recipes/raw/fonts_fs/fonts_fs.config
https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/pipe/README
https://github.com/genodelabs/genode/blob/master/repos/gems/src/lib/vfs/trace/README
https://github.com/genodelabs/genode/blob/master/repos/gems/recipes/raw/fonts_fs/fonts_fs.config
https://github.com/genodelabs/genode/blob/master/repos/gems/recipes/raw/fonts_fs/fonts_fs.config

3.3 C runtime and virtual file system

Further reading

Unix tutorial

Section 5.1 demonstrates the use of the terminal and pipe plugins.

VFS plugin tutorial

Section 5.3 shows how to write VFS plugins.

VFS article series on genodians.org

https://genodians.org/m-stein/2021-06-21-vfs-1

VFS examples in Goa repository

https://github.com/genodelabs/goa/tree/master/examples/vfs

28

https://genodians.org/m-stein/2021-06-21-vfs-1
https://github.com/genodelabs/goa/tree/master/examples/vfs

3.4 Networking

3.4 Networking

As a result of Genode’s architecture, there is no centralized IP stack. Instead, every
component (that requires network access) must have its own IP stack and IP address.
Consequently, virtual-networking infrastructure is required for on-system routing, for-
warding and network address translation. This is conducted by the NIC router.

3.4.1 TCP/IP stacks

Nic Router
10.0.1.1/24

Application

Libc / VFS

Lxip

10.0.1.2/24

Application

Libc / VFS

lwIP

10.0.1.3/24

Nic
session

Nic
session

In Genode, two different IP stacks are available as VFS plugins: the Linux TCP/IP
stack (lxip) and the lightweight IP (lwIP) stack. These plugins implement a socket file
system that translates file operations into network packets transmitted via a NIC ses-
sion. By pointing Genode’s C runtime to this socket file system, the BSD socket API
becomes available to the application.

Below is a minimal configuration example. For more details, please refer to Section
3.3.

29

3.4 Networking

<start name="...">
<config>
<libc socket="/sockets"/>
<vfs>
<dir name="sockets">
<lwip dhcp="yes"/>

</dir>
</vfs>

</config>
</start>

3.4.2 NIC Router

The NIC router is a central building block of Genode’s networking infrastructure. It acts
as a resource multiplexer in order to provide multiple application components with a
NIC session so that they can host their individual IP stacks. Moreover, driver compo-
nents are able to connect via Uplink sessions to the NIC router as well. Having both,
application components and driver components, act as client component has the ben-
efit that the NIC router does not depend on any other component. As a consequence,
driver components can be restarted or exchanged independently.

Internally, the NIC router performs network address translation and port forwarding
according to its configuration. The below figure illustrates a configuration example
with an NTP and HTTP server in separate virtual networks.

30

3.4 Networking

Figure 1

Here is the corresponding configuration snippet for the NIC router:

<config>
<policy label_prefix="virtnet_a" domain="virtnet_a" />
<policy label_prefix="virtnet_b" domain="virtnet_b" />

<domain name="uplink" interface="10.0.2.55/24" gateway="10.0.2.1" />
<tcp-forward port="443" domain="virtnet_a" to="192.168.1.2" />
<udp-forward port="123" domain="virtnet_b" to="192.168.2.2" />

</domain>

<domain name="virtnet_a" interface="192.168.1.1/24" />
<domain name="virtnet_b" interface="192.168.2.1/24" />

</config>

31

3.4 Networking

The <domain> nodes define the virtual networks. The <policy> nodes assign the
clients based on their session label to the defined domains. Each domain may further
have its own port-forwarding rules. For a more details explanation on the NIC router
configuration, please refer to the component’s README1.

3.4.3 Example: Virtual networking with Goa

By default, goa run executes the Genode binaries as Linux processes on the host sys-
tem. For every NIC session required by the runtime, Goa starts a NIC router and a
Linux NIC driver. The latter connects to an existing Linux tap device, which is a virtual
network interface.

You can add a tap0 device with IP address 10.0.100.1 using the following commands:

$ sudo ip tuntap add dev tap0 mode tap user $(whoami)
$ sudo ip address flush dev tap0
$ sudo ip addr add 10.0.100.1/24 dev tap0
$ sudo ip link set dev tap0 up

Since the Goa-managed NIC router issues DHCP requests to configure its uplink
domain, you also require a DHCP server listening on the tap0 device. There are several
options for this depending on your Linux distribution. A lightweight DHCP server is
dnsmasq. An exemplary configuration file dnsmasq.conf could look like this:

port=5353
interface=tap0
domain=lan
dhcp-range=10.0.100.2,10.0.100.2,12h

With this file, you are able to start the DHCP server from the command line:

$ sudo dnsmasq -C dnsmasq.conf

In the runtime file of a Goa project, you are further able to set the name of the tap
device and also specify additional domains and forwarding rules for the NIC router:

1https://github.com/genodelabs/genode/blob/master/repos/os/src/server/nic_router/
README

32

https://github.com/genodelabs/genode/blob/master/repos/os/src/server/nic_router/README
https://github.com/genodelabs/genode/blob/master/repos/os/src/server/nic_router/README
https://github.com/genodelabs/genode/blob/master/repos/os/src/server/nic_router/README

3.4 Networking

<runtime>
<requires>
<nic tap_name="tap0">
<!-- additional NIC router <domain> and <policy> nodes -->
<!-- <tcp-forward> and <udp-forward> nodes are inserted into

uplink domain -->
</nic>

</requires>
</runtime>

Please refer to Section 3.6 for a more detailed explanation of the runtime file syntax.

3.4.4 Example: Cascaded NIC routers

The NIC router can itself act as a NIC session client. This enables cascading router
setups. For example, let’s assume we start a subsystem with an LTE modem and its own
NIC router. Now, we want to route network traffic from application components to the
mobile network instead of a wired network. Application components that are already
connected to another NIC router would, however, require a restart if we changed their
service routing. By letting the NIC router in our subsystem act as a NIC client, we are
able to route network packets between the NIC routers. The figure below illustrates
this setup. For a more detailed explanation, please refer to the corresponding article on
genodians.org1.

1https://genodians.org/jschlatow/2021-07-21-mobile-network

33

https://genodians.org/jschlatow/2021-07-21-mobile-network
https://genodians.org/jschlatow/2021-07-21-mobile-network
https://genodians.org/jschlatow/2021-07-21-mobile-network

3.4 Networking

USB Host Driver
USB

USB Modem Driver

NIC Router
Uplink

NIC

NIC RouterNIC

NIC

Uplink

Platform Driver
Platform

NIC Driver

Network Application

TCP/IP Stack
Socket API

<nic_client/>

34

3.5 Package management

3.5 Package management

When speaking about “package management”, one has to clarify what a “package” in
the context of an operating system represents. Traditionally, a package is the unit of
delivery of a bunch of “dumb” files, usually wrapped up in a compressed archive. A
package may depend on the presence of other packages. Thereby, a dependency graph
is formed. To express how packages fit with each other, a package is usually accom-
panied by meta data (description). Depending on the package manager, package de-
scriptions follow certain formalisms (e. g., package-description language) and express
more-or-less complex concepts such as versioning schemes or the distinction between
hard and soft dependencies.

Genode’s package management does not follow this notion of a “package”. Instead
of subsuming all deliverable content under one term, we distinguish different kinds of
content, each in a tailored and simple form. To avoid the clash of the notions of the
common meaning of a “package”, we speak of “archives” as the basic unit of delivery.
Archives are named with their version as suffix, appended via a slash. This results in
the following scheme for architecture-independent archives:

<type>/<name>/<version>

Binary archives, on the other hand, are architecture-specific and adhere to a slightly
different scheme that includes the target architecture:

<type>/<name>/<arch>/<version>

This section focuses on depot-archive management with Goa. For a more general
explanation of archive categories, please refer to Section “Package management” in the
Genode Foundations book.

With Goa, depot archives are created and published by the commands goa export
and goa publish. Depending on the project-directory content, Goa creates the neces-
sary depot archives. The project directory therefore follows the depot nomenclature as
follows:

raw/

A raw-data archive contains arbitrary data that is independent of the processor
architecture. If there is a raw/ subdirectory, Goa takes its entire content to create a
raw archive named after the project.

src/

Goa creates a source archive for a project if there exists a src/ subdirectory. A
source archive contains to-be-compiled source code. The directory content can ei-
ther be manually managed or imported (see goa help import). Goa also creates

35

3.5 Package management

a corresponding, equally-named, binary (bin) archive containing the build arti-
facts as specified in the project’s artifacts file (see goa help artifacts). Genode
binaries are stripped from debug information. Instead, this information is made
available in separate debug info files. Goa deals with downloading, exporting
and publishing of the corresponding debug (dbg) archives when provided with
the --debug switch.

pkg/

A package archive specifies what ingredients are needed to deploy and execute
a certain scenario. It comprises three files: archives, runtime and README. The
archives file lists the names of all required raw, source, or package archives. The
runtime file describes the required/provided services and the subsystem config-
uration (see Section 3.6). Goa allows maintaining multiple package archives in
the same project directory. It expects the content of each package archive in a
pkg/<name>/ subdirectory.

api

Goa creates an API archive if there is an api file in the project directory (see goa
help api). An API archive is typically associated with a shared library and is
meant to provide all the ingredients for building components that use this library.
The archive contains header files and the library’s binary interface in the form of
an ABI-symbols file. Unless it is a header-only library, the API archive is accom-
panied by an equally-named source and binary archive.

index

Goa creates a depot index if there is an index file present in the project directory
(see goa help index). A depot index describes the available package archives
within a depot.

36

3.6 Runtime configuration

3.6 Runtime configuration

The runtime file of a package archive specifies the ingredients that are needed to deploy
the archive on a Genode system. A runtime file has the following structure:

<runtime ram="..." caps="..." binary="...">
<requires>
<!-- required session interfaces -->
<nic/>

</requires>

<provides>
<!-- provided sessions interfaces -->

</provides>

<content>
<!-- required ROM modules -->
<rom label="..."/>

</content>

<config>
<!-- component config -->

</config>
</runtime>

The runtime must define the amount of RAM, the number of capabilities and the
binary name. It also lists the required and provided session interfaces. Note that the
sub-nodes of the <requires> and <provides> are the lower-case service names. The
<content> node contains a list of required ROM modules (e. g. binaries, libraries, config
files). Furthermore, the component’s config can be added via a <config> node. For
more details, please consult Goa’s built-in help:

$ goa help runtime

The runtime file is also evaluated by goa run in order to set up a suitable Genode
environment on the host system. Section 3.4.3 has illustrated how Goa uses additional
attributes and content of a <nic> node to set up virtual networking. Please consult
Goa’s built-in help for an explanation of how the other services are emulated by Goa.

$ goa help targets

37

3.7 Graphical User Interfaces

3.7 Graphical User Interfaces

Since its first release, Genode came with its own low-level GUI stack centered around
a component called Nitpicker GUI server. Nitpicker provides three types of session in-
terfaces: GUI, Capture, and Event. Similar to the NIC router, Nitpicker is a resource
multiplexer. It mediates between framebuffer driver, input drivers, and applications.
Applications use the GUI session interface, which provides low-level access for writ-
ing to the framebuffer and receiving input events. Rather than sticking to low-level
drawing methods, GUI frameworks provide a more suitable level of abstraction for
application development.

This section provides an overview of the available GUI frameworks for Genode. For
a more detailed explanation of Genode’s low-level GUI stack, please refer to the corre-
sponding article on genodians.org1.

3.7.1 SDL

The Simple DirectMedia Layer (SDL) is a well-established cross-platform library often
used by computer games. Ports of SDL 1.2 and SDL 2.0 are available in the genode-
world repository. Additional SDL libraries such as SDL_image, SDL_ttf, SDL_net and
SDL_mixer are also available.

Genode-world repository

https://github.com/genodelabs/genode-world/

Genode application examples

Port of numptyphysics

https://github.com/nfeske/goa-playground/tree/master/games/numptyphysics

3.7.2 Qt (5/6)

Qt is a popular cross-platform application development framework. Early versions
of Genode already included a port of Qt4 that was later updated to Qt5 and, most
recently, Qt6. Since Genode’s port of the Falkon browser bases on Qt, and QtWebengine
in particular, this is the best supported GUI framework for Genode applications.

Qt5 examples and tutorials

https://doc.qt.io/qt-5/qtexamplesandtutorials.html

Qt6 examples and tutorials

https://doc.qt.io/qt-6/qtexamplesandtutorials.html

1https://genodians.org/nfeske/2020-06-23-gui-stack

38

https://genodians.org/nfeske/2020-06-23-gui-stack
https://github.com/genodelabs/genode-world/
https://github.com/nfeske/goa-playground/tree/master/games/numptyphysics
https://doc.qt.io/qt-5/qtexamplesandtutorials.html
https://doc.qt.io/qt-6/qtexamplesandtutorials.html
https://genodians.org/nfeske/2020-06-23-gui-stack

3.7 Graphical User Interfaces

Genode application examples

Falkon web browser

https://github.com/genodelabs/genode-world/tree/master/recipes/pkg/falkon

Qt5 textedit

https://github.com/genodelabs/genode/tree/master/repos/libports/recipes/
pkg/qt5_textedit

3.7.3 Mobile SDK based on Ubuntu/Lomiri UI Toolkit

The Ubuntu UI Toolkit bases on Qt5 and particularly targets touchscreen-optimized
application development. Since UBports resumed the development for Ubuntu Touch
after Canonical dropped support, the toolkit was renamed from Ubuntu UI Toolkit to
Lomiri UI Toolkit.

Port of Ubuntu UI Toolkit

https://github.com/genodelabs/genode-world/tree/master/recipes/pkg/ubuntu_
ui_toolkit

Porting the calculator app from Lomiri UI Toolkit

see Section 5.4

UBports website

https://ubports.com/

Genode application examples

Morph browser

https://github.com/genodelabs/genode-world/tree/master/recipes/pkg/morph_
browser

Linphone app

https://genodians.org/jws/2023-11-16-sip-client-for-genode

3.7.4 Light and Versatile Graphics Library (LVGL)

LVGL is a popular graphics library to create modern UIs for embedded devices. Being
optimized for embedded devices, LVGL comes with a small memory footprint. This
makes it a perfect fit for rather simple Genode applications.

Since LVGL targets embedded devices, it is typically used as a statically linked li-
brary and stripped down to the particular needs. For Genode, however, LVGL is avail-
able as a shared library (api/lvgl) with almost all features enabled. The LVGL library is

39

https://github.com/genodelabs/genode-world/tree/master/recipes/pkg/falkon
https://github.com/genodelabs/genode/tree/master/repos/libports/recipes/pkg/qt5_textedit
https://github.com/genodelabs/genode/tree/master/repos/libports/recipes/pkg/qt5_textedit
https://github.com/genodelabs/genode-world/tree/master/recipes/pkg/ubuntu_ui_toolkit
https://github.com/genodelabs/genode-world/tree/master/recipes/pkg/ubuntu_ui_toolkit
https://ubports.com/
https://github.com/genodelabs/genode-world/tree/master/recipes/pkg/morph_browser
https://github.com/genodelabs/genode-world/tree/master/recipes/pkg/morph_browser
https://genodians.org/jws/2023-11-16-sip-client-for-genode

3.7 Graphical User Interfaces

accompanied by a support library (api/lvgl_support) providing the LVGL driver back-
ends that interact with Genode’s GUI session. Both libraries are still in experimental
state.

LVGL documentation

https://docs.lvgl.io/master/

Dynamic desktop background “system info”

https://genodians.org/jschlatow/2024-02-07-system-info

40

https://docs.lvgl.io/master/
https://genodians.org/jschlatow/2024-02-07-system-info

4 Development & Debugging

This chapter describes how to prepare and build Genode executables for debugging.
Furthermore, it shows how to debug a runtime scenario on a Linux host and on Sculpt
OS.

41

4.1 Adding debug info files

4.1 Adding debug info files

Binary depot archives merely contain stripped binaries. Release 23.111 added the op-
tion to build and publish dbg archives that contain the corresponding debug info files
along with the binary archives.

When provided with the --debug switch, Goa takes care of dbg archives. A goa run
--debug will thus try downloading required dbg archives before running the scenario
and link the debug info files into the .debug subdirectory of the project’s run directory.
Moreover, it will create debug info files for all binary artifacts of the project. When
exporting/publishing a project, the --debug switch instructs Goa to create dbg archives
along with the created bin archives.

1https://genode.org/documentation/release-notes/23.11#Debug_information_for_depot_binaries

42

https://genode.org/documentation/release-notes/23.11#Debug_information_for_depot_binaries
https://genode.org/documentation/release-notes/23.11#Debug_information_for_depot_binaries

4.2 Using backtraces

4.2 Using backtraces

Genode’s os API provides the utility function Genode::backtrace() to walk the stack
and print the return addresses along the way. In order to use this function, genode-
labs/api/os must be added to the used_apis file. The function is then made available
by including the os/backtrace.h header. For demonstration, let’s have a look at the
system_info component (Section 3.7.4). After inserting a Genode::backtrace() in
Info::Bar::_draw_part_event_cb() in system_info.h followed by an infinite loop,
goa run produces the following output:

system_info$ goa run
Genode sculpt-24.04
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> system_info] [Warn] (0.000, +0) lv_init: Style sanity checks [...]
[init -> system_info] [Warn] (0.000, +0) lv_style_init: Style might be [...]
[init -> system_info] backtrace "ep"

This is obviously not very helpful. To assist the backtrace() function to parse stack
frames correctly, the build system must be instructed to preserve frame-pointer infor-
mation. Goa now provides the command-line switch --with-backtrace for this pur-
pose. Let’s give it a try:

system_info$ goa run --with-backtrace
Genode sculpt-24.04
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> system_info] [Warn] (0.000, +0) lv_init: Style sanity checks [...]
[init -> system_info] [Warn] (0.000, +0) lv_style_init: Style might be [...]
[init -> system_info] backtrace "ep"
[init -> system_info] 403ff728 1003f7b
[init -> system_info] 403ff798 1003fd1
[init -> system_info] 403ff7b8 103a5ad
[init -> system_info] 403ff7e8 7ffff7fdedd0

The second column of the backtrace data shows the return addresses on the call stack.
The first two addresses certainly belong to the system_info binary. The third address,
however, looks as if it might already belong to a shared library. For evaluation of the
backtrace, one needs to know to which addresses the shared libraries have been relo-
cated. This information is acquired by adding the ld_verbose=“yes” attribute to the
component’s config. Let’s try again:

43

4.2 Using backtraces

system_info$ goa run --with-backtrace
Genode sculpt-24.04
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> system_info] 0x1000000 .. 0x10ffffff: linker area
[init -> system_info] 0x40000000 .. 0x4fffffff: stack area
[init -> system_info] 0x50000000 .. 0x601b2fff: ld.lib.so
[init -> system_info] 0x10e1d000 .. 0x10ffffff: libc.lib.so
[init -> system_info] 0x10d79000 .. 0x10e1cfff: vfs.lib.so
[init -> system_info] 0x10d37000 .. 0x10d78fff: libm.lib.so
[init -> system_info] 0x101c000 .. 0x11f3fff: liblvgl.lib.so
[init -> system_info] 0x10d2f000 .. 0x10d36fff: posix.lib.so
[init -> system_info] 0x11f4000 .. 0x120efff: liblvgl_support.lib.so
[init -> system_info] 0x120f000 .. 0x148cfff: stdcxx.lib.so
[init -> system_info] [Warn] (0.000, +0) lv_init: Style sanity checks [...]
[init -> system_info] [Warn] (0.000, +0) lv_style_init: Style might be [...]
[init -> system_info] backtrace "ep"
[init -> system_info] 403ff728 1003f7b
[init -> system_info] 403ff798 1003fd1
[init -> system_info] 403ff7b8 103a5ad
[init -> system_info] 403ff7e8 7ffff7fdedd0

The output confirms that the third address belongs to liblvgl.lib.so. For convenient
interpretation of the backtrace data, Goa mirrors the tool/backtrace utility from the Gen-
ode repository. This utility translates the addresses from the backtrace into source code
lines. The goa backtrace command executes a goa run --debug --with-backtrace
and feeds the log output into the backtrace tool:

44

4.2 Using backtraces

system_info$ goa backtrace
Genode sculpt-24.04
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> system_info] 0x1000000 .. 0x10ffffff: linker area
[init -> system_info] 0x40000000 .. 0x4fffffff: stack area
[init -> system_info] 0x50000000 .. 0x601b2fff: ld.lib.so
[init -> system_info] 0x10e1d000 .. 0x10ffffff: libc.lib.so
[init -> system_info] 0x10d79000 .. 0x10e1cfff: vfs.lib.so
[init -> system_info] 0x10d37000 .. 0x10d78fff: libm.lib.so
[init -> system_info] 0x101c000 .. 0x11f3fff: liblvgl.lib.so
[init -> system_info] 0x10d2f000 .. 0x10d36fff: posix.lib.so
[init -> system_info] 0x11f4000 .. 0x120efff: liblvgl_support.lib.so
[init -> system_info] 0x120f000 .. 0x148cfff: stdcxx.lib.so
[init -> system_info] [Warn] (0.000, +0) lv_init: Style sanity checks [...]
[init -> system_info] [Warn] (0.000, +0) lv_style_init: Style might be [...]
[init -> system_info] backtrace "ep"
[init -> system_info] 403ff728 1003f7b
[init -> system_info] 403ff798 1003fd1
[init -> system_info] 403ff7b8 103a5ad
[init -> system_info] 403ff7e8 7ffff7fdedd0
Expect: ’interact’ received ’strg+c’ and was cancelled
Scanned image system_info
Scanned image ld.lib.so
...
void Genode::log<Genode::Backtrace>(Genode::Backtrace&&)

* 0x1003f7b: system_info:0x1003f7b W

* /depot/genodelabs/api/base/2024-04-11/include/base/log.h:170

Info::Bar::_draw_part_event_cb(_lv_event_t*)

* 0x1003fd1: system_info:0x1003fd1 W

* [...]/var/build/x86_64/system_info.h:277 (discriminator 1)

event_send_core

* 0x103a5ad: liblvgl.lib.so:0x1e5ad t

* [...]/goa-projects/lvgl/lvgl/src/src/core/lv_event.c:469

_end

* 0x7ffff7fdedd0: liblvgl_support.lib.so:0x7ffff6deadd0 B

* ??:0

The output shows that the first address on the stack points to the backtrace method
itself. The second address points to the _draw_part_event_cb() in which we inserted
the backtrace call. The third address points to liblvgl where the callback method was
called, however, the backtrace stops here because the lvgl library was not built with
frame-pointer information.

Let’s re-export liblvgl using the --with-backtrace switch and try again:

45

4.2 Using backtraces

lvgl$ goa export --debug --with-backtrace --depot-overwrite
...
[lvgl] exported [...]/depot/jschlatow/api/lvgl/2024-05-06
[lvgl] exported [...]/depot/jschlatow/src/lvgl/2024-05-06
[lvgl] exported [...]/depot/jschlatow/bin/x86_64/lvgl/2024-05-06
[lvgl] exported [...]/depot/jschlatow/dbg/x86_64/lvgl/2024-05-06

lvgl$ cd ../system_info
system_info$ goa backtrace
...
[init -> system_info] backtrace "ep"
[init -> system_info] 403ff6a8 1003f7b
[init -> system_info] 403ff718 1003fd1
[init -> system_info] 403ff738 103a57e
[init -> system_info] 403ff758 103a618
[init -> system_info] 403ff7a8 109d711
[init -> system_info] 403ff9a8 103a325
[init -> system_info] 403ff9c8 103a46a
[init -> system_info] 403ff9e8 103a618
[init -> system_info] 403ffa38 1048f10
[init -> system_info] 403ffab8 1048eb7
[init -> system_info] 403ffb38 1048eb7
[init -> system_info] 403ffbb8 1048eb7
[init -> system_info] 403ffc38 1048eb7
[init -> system_info] 403ffcb8 1049611
[init -> system_info] 403ffd08 10496ff
[init -> system_info] 403ffe38 104ab23
[init -> system_info] 403ffec8 109a048
[init -> system_info] 403fff18 10f52382

46

4.2 Using backtraces

Expect: ’interact’ received ’strg+c’ and was cancelled
Scanned image system_info
Scanned image ld.lib.so
...
void Genode::log<Genode::Backtrace>(Genode::Backtrace&&)

* 0x1003f7b: system_info:0x1003f7b W

* /depot/genodelabs/api/base/2024-04-11/include/base/log.h:170

Info::Bar::_draw_part_event_cb(_lv_event_t*)

* 0x1003fd1: system_info:0x1003fd1 W

* [...]/var/build/x86_64/system_info.h:277 (discriminator 1)

event_send_core

* 0x103a57e: liblvgl.lib.so:0x1e57e t

* [...]/goa-projects/lvgl/lvgl/src/src/core/lv_event.c:469

lv_event_send

* 0x103a618: liblvgl.lib.so:0x1e618 T

* [...]/goa-projects/lvgl/lvgl/src/src/core/lv_event.c:78

draw_indic

* 0x109d711: liblvgl.lib.so:0x81711 t

* [...]/goa-projects/lvgl/lvgl/src/src/widgets/lv_bar.c:506
...

Well, that looks much more helpful.

47

4.3 Debugging with Goa on base-linux

4.3 Debugging with Goa on base-linux

The Goa tool streamlines application development and testing as it allows executing a
Genode runtime directly on the Linux host system. Goa leverages the ABI compatibility
of Genode executables with all supported kernels. Genode executables can therefore be
run as Linux processes (using base-linux).

Goa’s default run target linux creates a <project-name>.gdb file in the project’s var di-
rectory to assist with GDB’s initialisation. Other run targets may copy this convention.
As mentioned in Section 4.1, Goa should be provided with the --debug switch to pre-
pare the run directory with additional debug info files:

system_info$ goa run --debug

Once the scenario of interest is running, you need to find the process ID (PID) of the
to-be-debugged component (e. g. by using pgrep -f). With the PID at hand, you can
start GDB and attach to the running process:

48

4.3 Debugging with Goa on base-linux

$ sudo gdb --command /path/to/project/var/project_name.gdb
GNU gdb (GDB) 14.2
Copyright (C) 2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-pc-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb) attach 2228
Attaching to process 2228
[New LWP 2237]
[New LWP 2246]
Reading symbols from [...]/depot/[...]/base-linux/2024-04-24/ld.lib.so...
(No debugging symbols found in [...]/base-linux/2024-04-24/ld.lib.so)
0x000000005009f74a in ?? ()
(gdb)
Thread 2 "ld.lib.so" stopped.
0x000000005009f74a in ?? ()

Thread 3 "ld.lib.so" stopped.
0x000000005009f74a in ?? ()

On attach, GDB fails to load symbols from the binary because it does not know about
the location of the corresponding debug info file. Moreover, GDB stops execution of all
threads.

The <project-name>.gdb file instructs GDB to change into the run directory, where
the debug info files are made available in the .debug subdirectory. GDB provides the
commands symbol-file and add-symbol-file for symbol loading. The former is used for
the main binary whereas the latter is intended for adding shared-library symbols. Let’s
give it a try:

49

4.3 Debugging with Goa on base-linux

(gdb) symbol-file .debug/system_info.debug
Reading symbols from .debug/system_info.debug...

(gdb) add-symbol-file .debug/ld.lib.so
add symbol table from file ".debug/ld.lib.so.debug"
(y or n) y
Reading symbols from .debug/ld.lib.so.debug...

(gdb) add-symbol-file .debug/liblvgl.lib.so.debug -o 0x101b000
add symbol table from file ".debug/liblvgl.lib.so.debug" with all sections
offset by 0x101b000

(y or n) y
Reading symbols from .debug/liblvgl.lib.so.debug...

Except for the main binary and ld.lib.so, an offset address must be specified when
loading symbols depending on where the libraries have been relocated. These ad-
dresses are shown by adding ld_verbose=“yes” to the component config.

With the symbols loaded, GDB’s info threads command shows at which line each
thread has been stopped:

(gdb) info threads
Id Target Id Frame

* 1 LWP 2228 "ld.lib.so" pseudo_end () at [...]/spec/x86_64/lx_syscall.S:29
2 LWP 2237 "ld.lib.so" pseudo_end () at [...]/spec/x86_64/lx_syscall.S:29
3 LWP 2246 "ld.lib.so" pseudo_end () at [...]/spec/x86_64/lx_syscall.S:29

The selected thread is marked with an *. Let’s continue all threads and switch to
thread 2 (see Section 4.4 for more details):

(gdb) continue -a &
Continuing.
(gdb) thread 2
[Switching to thread 2 (LWP 2237)]
(gdb) info threads
Id Target Id Frame
1 LWP 2228 "ld.lib.so" (running)

* 2 LWP 2237 "ld.lib.so" (running)
3 LWP 2246 "ld.lib.so" (running)

At this point, you are able to step through the individual threads:

50

4.3 Debugging with Goa on base-linux

(gdb) interrupt
Thread 2 "ld.lib.so" stopped.
pseudo_end () at [...]/src/lib/syscall/spec/x86_64/lx_syscall.S:29
29 ret /* Return to caller. */
(gdb) stepi
Genode::Native_thread::Epoll::poll (this=0x401fffe8)
at [...]/src/lib/base/native_thread.cc:82

82 if ((event_count == 1) && (events[0].events == POLLIN)) {
(gdb)

Admittedly, navigating through the depth of ld.lib.so is a bit cumbersome. For seri-
ous debugging, you would ideally be using breakpoints. GDB provides the list com-
mand for showing source code. Let’s peek into system_info.cc and insert a breakpoint in
handle_resize():

(gdb) list system_info.cc:90
85 .use_periodic_timer = true,
86 .periodic_ms = 5000,
87 .resize_callback = &_resize_callback,
88 .timer_callback = &_timer_callback,
89 };
90
91
92 void handle_resize()
93 {
94 Libc::with_libc([&] {
(gdb) break system_info.cc:94

Breakpoint 1 at 0x1000d50: system_info.cc:94. (2 locations)
Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x1000d50
Cannot insert breakpoint 1.
Cannot access memory at address 0x1001c79

Unfortunately, base-linux prevents inserting breakpoints at runtime by default. You
may apply the following patch to base-linux in order to enable software breakpoints:

51

4.3 Debugging with Goa on base-linux

--- a/repos/base-linux/src/lib/base/region_map_mmap.cc
+++ b/repos/base-linux/src/lib/base/region_map_mmap.cc
@@ -132,7 +132,7 @@ Region_map_mmap::_map_local(Dataspace_capability ds,

writeable = _dataspace_writeable(ds) && writeable;

int const fd = _dataspace_fd(ds);
- int const flags = MAP_SHARED | (overmap ? MAP_FIXED : 0);
+ int const flags = (writeable ? MAP_SHARED : MAP_PRIVATE)
+ | (overmap ? MAP_FIXED : 0);

int const prot = PROT_READ
| (writeable ? PROT_WRITE : 0)
| (executable ? PROT_EXEC : 0);

For providing the modified base-linux archive to Goa, you need to build pkg/-
goa and pkg/goa-linux and tell Goa not to use the genodelabs archives but your own
archives by using the --run-as <user> argument. Alternatively, you may edit Goa’s
linux.tcl file to pin only the base-linux archive to your depot.

Let’s opt for the latter version and provide Goa with the corresponding version in-
formation using a --version-... argument:

system_info$ goa run --debug --version-jschlatow/src/base-linux 2024-06-27

After repeating the steps for symbol loading, breakpoints can be added successfully:

(gdb) break system_info.h:272
Breakpoint 1 at 0x1001890: file [...]/var/build/x86_64/system_info.h, line 272
(gdb)
Thread 2 "ld.lib.so" hit Breakpoint 1, Info::Bar::_draw_part_event_cb

at [...]/var/build/x86_64/system_info.h:272
272 lv_obj_draw_part_dsc_t * dsc = lv_event_get_draw_part_dsc(e);

52

4.4 Using Sculpt as a remote test target

4.4 Using Sculpt as a remote test target

Running (and debugging) Genode applications with Goa on base-linux is typically the
first step. For advanced runtime scenarios, Goa also supports using a Sculpt system as a
remote test target, which eliminates the need for manually transferring depot archives.

Goa places all files required for running a scenario in the project’s run directory. By
transferring these files to the remote system, we are basically able to launch the scenario
on that system. A specifically tailored subsystem called “goa testbed” is available as a
preset since Sculpt 24.04. This subsystem hosts a lighttpd server with the mod_webdav
module enabled. This allows Goa to use the server-provided HTTP ETags to identify
what files from the run directory need to be (re-)uploaded via HTTP PUT.

In addition to lighttpd, the testbed runs a sub-init that reacts to changes to the config
file from the synchronised run directory. Once all prerequisites have been synchronised,
starting a scenario on the remote system comes down to uploading the config file. By
deleting the config file from the remote system, the scenario is killed.

Log output is made available via telnet using an integrated TCP terminal component.
Since Sculpt 24.10, the Goa testbed uses the debug monitor for the sub-init in order to
support debugging via GDB. The debug monitor’s terminal connection is made avail-
able via a separate TCP terminal. The below figure illustrates the resulting interplay
between Goa and the Goa testbed.

Sculpt OS Linux

TCP Terminal

TCP Terminal

HTTP Server tcp:80

tcp:23

tcp:9999

telnet

gdb

curl
binaries and config

log output

LAN
(wired/wireless)

Goa Testbed

$ goa run --target sculpt

In order to run a Goa project on a remote Sculpt system, you first need to launch
goa_testbed, which is best done by enabling the built-in preset.

On the development system, you can switch the run target by adding the --target
sculpt option to Goa’s command line. The IP address of the remote system is specified
by the --target-opt-sculpt-server argument (see goa help targets). Let’s give
the system info scenario a spin:

53

4.4 Using Sculpt as a remote test target

system_info$ goa run --target sculpt --target-opt-sculpt-server <sculpt-ip>
uploaded libm.lib.so (remote change)
uploaded stdcxx.lib.so (remote change)
uploaded vfs.lib.so (remote change)
uploaded liblvgl.lib.so (local change)
uploaded system_info (local change)
uploaded posix.lib.so (remote change)
uploaded liblvgl_support.lib.so (local change)
uploaded libc.lib.so (remote change)
uploaded config (local change)
Trying 192.168.42.54...
Connected to 192.168.42.54.
Escape character is ’^]’.
[monitor] monitor ready
[init -> system_info] [Warn] (0.000, +0) lv_init: Style sanity checks [...]
Expect: ’interact’ received ’strg+c’ and was cancelled
deleted config

The app magically pops up on the target system and the log output is shown on the
development system. When hitting ctrl+c, the config is deleted from the target system,
which kills the app.

For starting a debugging session, you should add the --debug and --target-opt-
sculpt-kernel arguments. The latter tells Goa what kernel the remote target is run-
ning so that the debug symbols of the corresponding ld.lib.so library can be made avail-
able:

system_info$ goa run --debug --target sculpt \
--target-opt-sculpt-server 192.168.42.54 --target-opt-sculpt-kernel nova

The sculpt run target follows the lead of the linux target and also generates a <project-
name>.gdb to assist GDB initialisation. Let’s peek into the file:

$ cat [...]/var/system_info.gdb
cd [...]/var/run
set non-stop on
set substitute-path /data/depot /home/johannes/repos/genode/depot
set substitute-path /depot /home/johannes/repos/genode/depot
target extended-remote 192.168.42.54:9999

The file instructs GDB to change into the project’s run directory and sets GDB into
non-stop mode. Moreover, GDB must be pointed to the correct depot location on the
host system. The paths from the debug info files typically refer to files at /data/depot

54

4.4 Using Sculpt as a remote test target

or /depot. These paths can be relocated by using the set substitute-path command.
The last line instructs GDB to connect to the remote target using the address provided
via the --target-opt-sculpt-server argument and the port provided by --target-
opt-sculpt-port-gdb.

Let’s start GDB with this file. In contrast to debugging on Linux, you should use the
gdb binary from the Genode tool chain. Moreover, root privileges are not required.

$ genode-x86-gdb --command /path/to/project/var/project_name.gdb
GNU gdb (GDB) 13.1
Copyright (C) 2023 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-pc-linux-gnu --target=x86_64-pc-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<https://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
warning: No executable has been specified and target does not support
determining executable automatically. Try using the "file" command.
(gdb) warning: No executable has been specified and target does not support
determining executable automatically. Try using the "file" command.
(gdb) info inferiors
Num Description Connection Executable

* 1 process 1 1 (extended-remote 192.168.42.54:9999)

GDB’s info inferiors command lists a single process. Let’s have a look at the
threads:

(gdb) info threads
Id Target Id Frame
1 Thread 1.1 "system_info" (running)
2 Thread 1.2 "ep" (running)

* 3 Thread 1.3 "signal handler" (running)

Fortunately, we are provided with the thread names. The “system_info” thread is
the initial thread set up by Genode’s init component. After component initialization,
however, the entrypoint thread “ep” becomes the most interesting thread for Genode
components. Let’s therefore switch to thread 2 as we did in the previous section without
giving any explanation:

55

4.4 Using Sculpt as a remote test target

(gdb) thread 2
[Switching to thread 2 (Thread 1.2)](running)

As before, symbols must be loaded manually:

(gdb) symbol-file .debug/system_info.debug
Reading symbols from .debug/system_info.debug...

(gdb) add-symbol-file .debug/ld.lib.so.debug
add symbol table from file ".debug/ld.lib.so.debug"
(y or n) y
Reading symbols from .debug/ld.lib.so.debug...

(gdb) add-symbol-file .debug/liblvgl.lib.so.debug -o 0x101b000
add symbol table from file ".debug/liblvgl.lib.so.debug" with all sections
offset by 0x101b000

(y or n) y
Reading symbols from .debug/liblvgl.lib.so.debug...

With the most essential symbols available, you can insert a software breakpoint in the
handle_resize() method and trigger it by resizing the window on the target system:

(gdb) break system_info.cc:94
Breakpoint 2 at 0x1000d50: system_info.cc:94. (2 locations)
(gdb)
Thread 2 "ep" hit Breakpoint 2.1, Main::Resize_callback::operator()
(this=0x101abf8 <Libc::Component::construct(Libc::Env&)::main+8824>) at
system_info.cc:94
94 Libc::with_libc([&] {

Perfect. Note that in some occasions, it can be helpful to insert breakpoints at compile
time to halt the execution before an error condition occurs. On x86, this can be achieved
by inserting an asm volatile (“int3”) at the point of interest. Happy debugging!

56

4.5 Further reading

4.5 Further reading

4.5.1 Using a VNC server on a remote test target

Goa’s ability to run applications on a remote Sculpt system comes in handy for testing.
However, switching between keyboards to control the remote-running application can
be a tiny inconvenience. The following article demonstrates how a VNC server can be
put into use for remote accesses to GUI applications.

Using a headless Sculpt as a remote test target

https://genodians.org/jschlatow/2024-06-04-goa-sculpt-vnc

4.5.2 On-target debugging with GDB

Live debugging of Sculpt runtime components is a built-in feature since version 24.04.
Instructions and live demo are available on genodians.org:

On-target debugging with GDB on Sculpt OS 24.04

https://genodians.org/chelmuth/2024-05-17-on-target-debugging

4.5.3 Performance analysis

For an introduction to pragmatic performance analysis and tracing, please refer to these
articles at genodians.org.

Performance analysis made easy

https://genodians.org/nfeske/2021-04-07-performance

Identifying network-throughput bottlenecks with trace recording

https://genodians.org/jschlatow/2022-08-29-trace-recorder

57

https://genodians.org/jschlatow/2024-06-04-goa-sculpt-vnc
https://genodians.org/chelmuth/2024-05-17-on-target-debugging
https://genodians.org/nfeske/2021-04-07-performance
https://genodians.org/jschlatow/2022-08-29-trace-recorder

5 Tutorials

This section provides a collection of tutorials that focus on certain aspects during ap-
plication development for Genode.

As preparatory steps, make sure you have the latest Genode tool chain and Goa in-
stalled (see Section 2).

58

5.1 Sticking together a little Unix

5.1 Sticking together a little Unix

This section is based on Norman Feske’s article series1 at https://genodians.org.
This tutorial takes you on a ride of creating a small Unix OS out of Genode’s ready-

to-use building blocks, publishing the result, and deploying it on top of Sculpt OS. It
shows the fun and productive way of crafting component compositions out of Genode’s
readily available building blocks. What could be a better example than building an old-
school operating system - Unix - that we all know and love? You can find the results of
this tutorial in Norman’s playground repository2.

Preparations Before continuing, please make sure to have installed the Goa tool,
which is available at https://github.com/genodelabs/goa. If you have it installed al-
ready, please make sure the tool is up to date. You can issue the following command to
update Goa to the latest version:

$ goa update-goa

Hello bash As the first step, we want to get a life sign of the bash shell. We start
with a new Goa project appropriately named unix that hosts a runtime package but no
source code.

$ mkdir unix
$ cd unix
unix$ mkdir -p pkg/unix

Let’s pretend we don’t know what we are doing and create an archives file with only
bash listed, and an almost empty runtime file. The runtime starts the binary init, which
is supposed to be a ROM module. Please have a look at goa help runtime for more
details on how to write runtime files.

The pkg/unix/archives file:

genodelabs/src/bash

The pkg/unix/runtime file:

<runtime ram="100M" caps="5000" binary="init">
<content>
<rom label="init"/>

</content>
</runtime>

1https://genodians.org/nfeske/2019-12-13-goa-unix-bash
2https://github.com/nfeske/goa-playground

59

https://genodians.org/nfeske/2019-12-13-goa-unix-bash
https://genodians.org
https://github.com/nfeske/goa-playground
https://github.com/genodelabs/goa
https://genodians.org/nfeske/2019-12-13-goa-unix-bash
https://github.com/nfeske/goa-playground

5.1 Sticking together a little Unix

Let’s see what happens when issuing the run command:

unix$ goa run

download genodelabs/bin/x86_64/bash/2023-10-24.tar.xz
download genodelabs/bin/x86_64/bash/2023-10-24.tar.xz.sig
download genodelabs/src/bash/2023-10-24.tar.xz
download genodelabs/src/bash/2023-10-24.tar.xz.sig
download genodelabs/api/libc/2023-10-03.tar.xz
download genodelabs/api/libc/2023-10-03.tar.xz.sig
download genodelabs/api/noux/2023-06-15.tar.xz
download genodelabs/api/noux/2023-06-15.tar.xz.sig
download genodelabs/api/posix/2020-05-17.tar.xz
download genodelabs/api/posix/2020-05-17.tar.xz.sig
[unix] Error: runtime lacks a configuration

You may declare a ’config’ attribute in the <runtime> node, or
define a <config> node inside the <runtime> node.

Let’s follow the advice by adding an empty <config> node to our pkg/unix/runtime
file:

<runtime ram="100M" caps="5000" binary="init">
<config/>
<content>
<rom label="init"/>

</content>
</runtime>

Besides the error message, you could see that Goa automatically downloaded bash
along with its dependencies such as the libc. Besides the binaries, it also fetches all
source codes. You can find all the downloads at var/depot/. One particularly interesting
directory is the binary archive for bash:

unix$ ls var/depot/genodelabs/bin/x86_64/bash/2023-10-24/

bash.tar

It contains a single tar archive, which in turn, contains all installation files of bash.
Let’s take a look inside:

unix$ tar tf var/depot/genodelabs/bin/x86_64/bash/2023-10-24/bash.tar

60

5.1 Sticking together a little Unix

./

./share

./share/doc

...

./bin/bashbug

./bin/bash

Of course, the most interesting bit is the bash executable at bin/bash. When using the
binary archive, the whole bash.tar is supplemented to Genode as a single ROM module.
Let’s add it to the <content> of the pkg/unix/runtime:

<runtime ram="100M" caps="5000" binary="init">
<config/>
<content>
<rom label="init"/>
<rom label="bash.tar"/>

</content>
</runtime>

After issuing goa run again, Goa downloads the additional packages needed to run
our pkg/unix on Linux, integrates the scenario, and starts it.

unix$ goa run
download genodelabs/bin/x86_64/base-linux/2023-10-24.tar.xz
download genodelabs/bin/x86_64/base-linux/2023-10-24.tar.xz.sig
download genodelabs/bin/x86_64/init/2023-10-24.tar.xz
download genodelabs/bin/x86_64/init/2023-10-24.tar.xz.sig
download genodelabs/src/base-linux/2023-10-24.tar.xz
download genodelabs/src/base-linux/2023-10-24.tar.xz.sig
download genodelabs/src/init/2023-10-24.tar.xz
download genodelabs/src/init/2023-10-24.tar.xz.sig
download genodelabs/api/base/2023-10-24.tar.xz
download genodelabs/api/base/2023-10-24.tar.xz.sig
download genodelabs/api/os/2023-08-21.tar.xz
download genodelabs/api/os/2023-08-21.tar.xz.sig
download genodelabs/api/report_session/2023-05-26.tar.xz
download genodelabs/api/report_session/2023-05-26.tar.xz.sig
download genodelabs/api/sandbox/2023-10-03.tar.xz
download genodelabs/api/sandbox/2023-10-03.tar.xz.sig
download genodelabs/api/timer_session/2023-10-03.tar.xz
download genodelabs/api/timer_session/2023-10-03.tar.xz.sig
Genode sculpt-23.10
17592186044415 MiB RAM and 18997 caps assigned to init

61

5.1 Sticking together a little Unix

You can find bash.tar added to the var/run/ directory, which comprises all the ROM
modules of our Genode system.

Of course, we cannot start a TAR archive. It is not an executable after all. We rather
need to access the content of the archive. Here, the combination of three Genode com-
ponents namely VFS, fs_rom, and init come to the rescue.

1. The VFS server is able to mount a TAR archive locally as a virtual file system and
offer its content as a file-system service.

2. The fs_rom component provides a ROM service by fetching the content of ROM
modules from a file system. By connecting the fs_rom with the VFS component,
the files of the bash.tar archives become available as ROM modules. With the bash
executable binary accessible, we can execute it.

3. The init component allows us to stick components together and let the result ap-
pear to the surrounding system as a single component. We can use it to host the
composition of the VFS, fs_rom, and bash.

Note that our pkg/unix/runtime refers to Genode’s init component in the attribute
binary=“init”. So as a whole, our subsystem will be an instance of init. Internally,
init will host several child components and manage their resources and relationships
according to its configuration. Let’s start with a fresh init that hosts only the VFS
server by replacing our empty <config/> in our pkg/unix/runtime file by the following
configuration.

<config>
<parent-provides>
<service name="ROM"/>
<service name="LOG"/>
<service name="RM"/>
<service name="CPU"/>
<service name="PD"/>
<service name="Timer"/>

</parent-provides>

<start name="vfs" caps="100">
<resource name="RAM" quantum="10M"/>
<provides> <service name="File_system"/> </provides>
<config>
<vfs> <tar name="bash.tar"/> </vfs>
<default-policy root="/" />

</config>
<route> <any-service> <parent/> </any-service> </route>

</start>

</config>

62

5.1 Sticking together a little Unix

The <default-policy> expresses that any client should be able to access the root of the
virtual file system in a read-only fashion.

When trying to run the scenario now, you see a bunch of messages:

unix$ goa run

[unix] config <parent-provides> mentions a timer service;
consider adding <timer/> as a required runtime service

Genode sculpt-23.10
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> unix] Error: vfs: environment ROM session denied ...

The first message points out that init’s <parent-provides> declaration refers to a
service that should better also be announced as a requirement in the runtime file. This
can be done by adding the following <requires> node inside the <runtime> node.

<runtime>
...
<requires>
<timer/>

</requires>
...

</runtime>

The subsequent “Error:" messages tell us that init requested the ROM module vfs
that is not available to the scenario, yet. To make this ingredient available to our sce-
nario, we have to declare it in the archives and as <content> in the runtime file. While
we are at it, lets also capture the need for init because our entire scenario is based on
this component. Let’s add the following lines to pkg/unix/archive:

genodelabs/src/vfs
genodelabs/src/init

Also make sure to have the ROM modules listed as <content> in the pkg/unix/runtime
so that it looks as follows:

<content>
<rom label="init"/>
<rom label="bash.tar"/>
<rom label="vfs"/>

</content>

63

5.1 Sticking together a little Unix

When issuing goa run again, we can see Goa downloading the additional compo-
nents. On the attempt to start the scenario, we are confronted with another error mes-
sage:

[init -> unix -> vfs] Error: Could not open ROM session for "vfs.lib.so"

This message tells us that the VFS server requests another ROM module, which is
a shared library. The vfs.lib.so contains the actual implementation of the virtual file
system. It comes in the form of a library to enable its use either locally by an individ-
ual application or via the VFS server. The library is part of the genodelabs/src/vfs
archive that is already listed in our archives file. So we can resolve this error by adding
a corresponding <rom> entry to the runtime file. The <content> should now look as
follows:

<content>
<rom label="init"/>
<rom label="bash.tar"/>
<rom label="vfs"/>
<rom label="vfs.lib.so"/>

</content>

When running the scenario again, we see a sign of hope:

unix$ goa run

Genode sculpt-23.10
17592186044415 MiB RAM and 18997 caps assigned to init

No further errors! That means that the VFS server is running and has presumably
mounted the bash.tar archive. On a second terminal, you can indeed observe the VFS
server showing up.

$ ps u

... [Genode] init

... [Genode] init -> timer

... [Genode] init -> unix

... [Genode] init -> unix -> vfs

The second piece of the puzzle is the fs_rom server, which can be added to the <con-
fig> node of pkg/unix/runtime with the following snippet:

64

5.1 Sticking together a little Unix

<start name="vfs_rom" caps="100">
<resource name="RAM" quantum="10M"/>
<binary name="fs_rom"/>
<provides> <service name="ROM"/> </provides>
<config/>
<route>
<service name="File_system"> <child name="vfs"/> </service>
<any-service> <parent/> </any-service>

</route>
</start>

By using the <binary> node, we can label the component in a meaningful way, calling
it “vfs_rom”. The first entry of the <route> node defines that the request for a file-
system session should be routed to the “vfs” component.

On the next attempt to issue goa run, we face an error message:

[init -> unix] Error: vfs_rom: environment ROM session denied

By now, I’m sure you know how to resolve this one. Corresponding entries to your
archives file and the runtime file’s <content> are added swiftly. The fs_rom component
gives us no life sign, which is normal. If you want to get a little bit more action on
screen, you may add the verbose=“yes” attribute to init’s <config> node. Another try
of goa run reveals the following output.

65

5.1 Sticking together a little Unix

unix$ goa run

Genode sculpt-23.10
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> unix] parent provides
[init -> unix] service "ROM"
[init -> unix] service "LOG"
[init -> unix] service "RM"
[init -> unix] service "CPU"
[init -> unix] service "PD"
[init -> unix] service "Timer"
[init -> unix] child "vfs"
[init -> unix] RAM quota: 9992K
[init -> unix] cap quota: 66
[init -> unix] ELF binary: vfs
[init -> unix] priority: 0
[init -> unix] provides service File_system
[init -> unix] child "vfs_rom"
[init -> unix] RAM quota: 9992K
[init -> unix] cap quota: 66
[init -> unix] ELF binary: fs_rom
[init -> unix] priority: 0
[init -> unix] provides service ROM
[init -> unix] child "vfs" announces service "File_system"
[init -> unix] child "vfs_rom" announces service "ROM"

That looks promising. Now with the bash executable available as ROM module, let’s
give the bash shell a spin:

66

5.1 Sticking together a little Unix

<start name="/bin/bash" caps="1000">
<resource name="RAM" quantum="10M" />
<config>
<libc stdin="/dev/null" stdout="/dev/log" stderr="/dev/log"

rtc="/dev/null"/>
<vfs>
<dir name="dev"> <null/> <log/> </dir>

</vfs>
<arg value="bash"/>
<arg value="-c"/>
<arg value="echo files at /dev: /dev/*"/>

</config>
<route>
<service name="ROM" label_last="/bin/bash">
<child name="vfs_rom"/> </service>

<any-service> <parent/> </any-service>
</route>

</start>

The following parts are worth highlighting:

• The bash has its own VFS! This has nothing to do with the VFS server we started
above. In fact, bash’s VFS - as configured by the <vfs> node - merely contains the
two pseudo files /dev/null and /dev/log. The latter one is a LOG connection that
enables the bash to write messages to the outside world.

• The <libc> node contains the configuration of the C runtime used by bash. Here
we say how the standard output should go, or that the C runtime should obtain
its “real-time-clock” information from /dev/null. No time for you this time!

• Via the sequence of <arg> nodes, we execute the command

echo files at /dev: /dev/*

It uses the shell’s file globbing mechanism to obtain the list of files matching the
pattern "/dev/*" and prints it via the echo built-in command.

• The <route> rules explicitly tell init that the binary of the component should be
obtained from the “vfs_rom” component.

When trying to goa run the scenario now, we have to add a few more entries to our
archives and <content>, specifically because bash uses the C runtime (libc and libm) as
well as the posix library. The full list of archives now looks as follows:

67

5.1 Sticking together a little Unix

genodelabs/src/bash
genodelabs/src/vfs
genodelabs/src/init
genodelabs/src/fs_rom
genodelabs/src/libc
genodelabs/src/posix

For reference, the <rom> modules listed in the runtime file’s <content> node:

<content>
<rom label="init"/>
<rom label="bash.tar"/>
<rom label="vfs"/>
<rom label="vfs.lib.so"/>
<rom label="fs_rom"/>
<rom label="libc.lib.so"/>
<rom label="libm.lib.so"/>
<rom label="posix.lib.so"/>

</content>

Once these stumbling blocks are out of the way, goa run greets us with the following
output:

...
[init -> unix] child "vfs" announces service "File_system"
[init -> unix] child "vfs_rom" announces service "ROM"
[init -> unix -> /bin/bash] files at /dev: /dev/log /dev/null
[init -> unix] child "/bin/bash" exited with exit value 0

The message “files at /dev: /dev/log /dev/null” is the output of the bash command
we have hoped for!

Some reorg is in order The scenario we just built was quite small. For such small
scenarios, defining the <config> node right in the runtime file is quite handy. Once the
subsystem becomes bigger, however, its better to move the <config> into a dedicated
ROM module. Let us create a new directory named raw/ inside the project directory,
and move the <config> node from the runtime file to a new file raw/unix.config. Goa will
pick up all files contained in the raw/ directory and supply them as ROM modules to
the Genode scenario.

Since there is no longer a <config> provided in the runtime file, we tell the runtime
to use the “unix.config” as configuration by changing the <runtime> node as follows:

68

5.1 Sticking together a little Unix

<runtime ram="100M" caps="5000" binary="init" config="unix.config">

Since unix.config is expected to be present as a ROM module, we have to declare via
a <rom> node in the runtime file.

For reference, the pkg/unix/runtime file should now look as follows:

<runtime ram="100M" caps="5000" binary="init" config="unix.config">

<content>
<rom label="init"/>
<rom label="bash.tar"/>
<rom label="vfs"/>
<rom label="vfs.lib.so"/>
<rom label="fs_rom"/>
<rom label="libc.lib.so"/>
<rom label="libm.lib.so"/>
<rom label="posix.lib.so"/>
<rom label="unix.config"/>

</content>

</runtime>

The raw/unix.config file:

69

5.1 Sticking together a little Unix

<config verbose="yes">

<parent-provides>
<service name="ROM"/>
<service name="LOG"/>
<service name="RM"/>
<service name="CPU"/>
<service name="PD"/>
<service name="Timer"/>

</parent-provides>

<start name="vfs" caps="100">
<resource name="RAM" quantum="10M"/>
<provides> <service name="File_system"/> </provides>
<config>
<vfs> <tar name="bash.tar"/> </vfs>
<default-policy root="/" />

</config>
<route> <any-service> <parent/> </any-service> </route>

</start>

<start name="vfs_rom" caps="100">
<resource name="RAM" quantum="10M"/>
<binary name="fs_rom"/>
<provides> <service name="ROM"/> </provides>
<config/>
<route>
<service name="File_system"> <child name="vfs"/> </service>
<any-service> <parent/> </any-service>

</route>
</start>

<start name="/bin/bash" caps="1000">
<resource name="RAM" quantum="10M" />
<config>
<libc stdin="/dev/null" stdout="/dev/log" stderr="/dev/log"

rtc="/dev/null"/>
<vfs>
<dir name="dev"> <null/> <log/> </dir>

</vfs>
<arg value="bash"/>
<arg value="-c"/>
<arg value="echo files at /dev: /dev/*"/>

</config>
<route>
<service name="ROM" label_last="/bin/bash">
<child name="vfs_rom"/> </service>

<any-service> <parent/> </any-service>
</route>

</start>

</config>

70

5.1 Sticking together a little Unix

This reorganization has two advantages. First, we save one indentation level for the
<config> node. Second, by separating the unix.config from the runtime in the form of
a dedicated ROM module, we can later reuse the same ROM module for other runtime
files. It is always good to have reusable building blocks.

You may give the new version a try by issuing goa run. The output should look
familiar.

GUI stack Goa supports interactive system scenarios by looking at the requirements
stated in the runtime file. Right now, the runtime file merely states the amount of RAM
and caps as a requirement. We can add the presence of a GUI service as an additional
requirement by adding a <gui> node inside the <runtime> node:

<requires>
<gui/>
<timer/>

</requires>

When Goa processes the goa run command, it evaluates this information. The <gui>
node tells Goa that the scenario will request a session to a GUI server. When running
the scenario on Linux, Goa will automatically integrate the components needed for
such a GUI server. This includes a pseudo graphics driver, a pseudo input driver, and
the nitpicker GUI server1.

Let’s try goa run after having added the <requires> definition to our runtime. Goa
responds with the following message:

[unix] Error: runtime requires <gui/>,
which is not mentioned in <parent-provides>

It points out the fact that the runtime file pretends to require a <gui> service but
according to init configuration in unix.config no such service is actually obtained from
the parent. So either the <requires> definition is superfluous or the init configuration
is wrong or incomplete. To satisfy this sanity check, let’s add the following line to the
<parent-provides> declarations in the raw/unix.config file.

<parent-provides>
...
<service name="Gui"/>

</parent-provides>

1https://github.com/genodelabs/genode/tree/master/repos/os/src/server/nitpicker

71

https://github.com/genodelabs/genode/tree/master/repos/os/src/server/nitpicker
https://github.com/genodelabs/genode/tree/master/repos/os/src/server/nitpicker

5.1 Sticking together a little Unix

Upon the next goa run, we can see that Goa automatically downloads the basic com-
ponents of the GUI stack. Not only that. When starting the scenario, a new window
with a greenish background pops up. When hovering the mouse over the window, you
can see a small mouse pointer. If you are curious how the GUI stack is assembled in de-
tail, please have a look at var/run/config. Yet, from the perspective of our Unix scenario,
these exact details are not of interest. The only important point is that our scenario
is now officially able to request a “Gui” and a “Timer” service from the underlying
system.

With these preconditions in place, we can start a graphical terminal in our unix.config
by adding the following <start> node:

<start name="terminal" caps="110">
<resource name="RAM" quantum="10M"/>
<provides> <service name="Terminal"/> </provides>
<route>
<service name="ROM" label="config">
<parent label="terminal.config"/> </service>

<any-service> <parent/> </any-service>
</route>

</start>

The “terminal”1 uses a GUI service to create a graphical terminal and provides the
textual input and output in the form of a “Terminal” service. In the routing rules of
the terminal, you can see that the terminal’s configuration is fetched from a dedicated
ROM module called “terminal.config”. We have no such ROM module defined yet.
However, let’s still give it a try:

[init -> unix] Error: terminal: environment ROM session denied
(label="terminal" ...)

...

That’s not surprising as we have not added terminal to our archives nor have we
stated the <rom> modules in the runtime file’s <content>. Let’s do this now. While we
are at it, let’s also add a <rom> node for the “terminal.config” ROM.

The following line must be added to pkg/unix/archives

genodelabs/src/terminal

The following two lines must be added to the runtime file’s <content>:

1https://github.com/genodelabs/genode/tree/master/repos/gems/src/server/terminal

72

https://github.com/genodelabs/genode/tree/master/repos/gems/src/server/terminal
https://github.com/genodelabs/genode/tree/master/repos/gems/src/server/terminal

5.1 Sticking together a little Unix

<content>
...
<rom label="terminal"/>
<rom label="terminal.config"/>

</content>

When trying goa run again, we see that we exchanged the previous errors with a
new one. Let’s call it progress:

[unix] Error: Unable to find content ROM module ’terminal.config’.

You either need to add it to the ’raw/’ directory
or add the corresponding dependency to the ’archives’ file.

The error is easy to explain. We have configured the “terminal” start node to fetch its
configuration from a ROM called terminal.config but have not defined the ROM module
so far. Let’s add a new file raw/terminal.config with an empty <config> node:

<config/>

With the file added, our next call of goa run is answered as follows.

[init -> unix -> terminal] Error: Uncaught exception of type
’Genode::Xml_node::Nonexistent_sub_node’

[init -> unix -> terminal] Warning: abort called - thread: ep

Well, the terminal seems underwhelmed by us serving an empty <config/> as con-
figuration. It is time to become more specific. Let’s change the content of the raw/termi-
nal.config to something meaningful:

<config>
<vfs>
<rom name="VeraMono.ttf"/>
<dir name="fonts">
<dir name="monospace">
<ttf name="regular" path="/VeraMono.ttf" size_px="16"/>

</dir>
</dir>

</vfs>
</config>

73

5.1 Sticking together a little Unix

Wait a minute. How is this a terminal configuration?
The terminal expects its font to be found at its local VFS at /fonts/monospace. The font

has the form of a pseudo file system that provides the pixel data of the glyphs along
with the font meta data as a bunch of pseudo files. So here, we mount a TrueType font
with the ttf file-system driver at /fonts/monospace. The font file is specified as path
attribute, which refers to "/VeraMono.ttf”. This file, in turn, is backed by a <rom>

session that requests the ROM module named “VeraMono.ttf”.
With this configuration in place, the next attempt of goa run yields a quite pre-

dictable result:

[... unix -> terminal] Error: could not open ROM session for "VeraMono.ttf"
[... unix -> terminal] Error: failed to create <rom> VFS node
[... unix -> terminal] Error: name="VeraMono.ttf"
[... unix -> terminal] Error: ROM-session creation failed (...)
[... unix -> terminal] Error: could not open ROM session for "vfs_ttf.lib.so"
[... unix -> terminal] Error: failed to create <ttf> VFS node
[... unix -> terminal] Error: name="regular"
[... unix -> terminal] Error: path="/VeraMono.ttf"
[... unix -> terminal] Error: size_px="16"

The terminal configuration refers to two ROM modules that we haven’t yet included
into the scenario. The “VeraMono.ttf” is the TrueType font data we tried to mount as
<rom> node. The “vfs_ttf.lib.so” is the driver for the “ttf” pseudo file system. It is
requested by the VFS when the <ttf> is encountered. The errors can be resolved by
extending the archives file and the runtime file’s <content> node accordingly.

The following lines must be added to pkg/unix/archives

genodelabs/raw/ttf-bitstream-vera-minimal
genodelabs/src/vfs_ttf

The following lines must be added to the <content> node in pkg/unix/runtime

<content>
...
<rom label="VeraMono.ttf"/>
<rom label="vfs_ttf.lib.so"/>

</content>

Good news! On the next try of goa run, you can see the error gone and are greeted
with a black screen instead. The log output of /bin/bash looks as usual.

74

5.1 Sticking together a little Unix

Connecting bash with the terminal With the current scenario, bash and the GUI
stack are running peacefully side by side but they do not interact with each other. To
connect them, we do the following:

1. Mount a terminal session to the VFS of the VFS server at /dev/terminal.

This can be done by changing the content of the <start> node of the VFS server.
As a reminder, this is how it looks so far:

<config>
<vfs> <tar name="bash.tar"/> </vfs>
<default-policy root="/" />

</config>
<route> <any-service> <parent/> </any-service> </route>

We change it to the following:

<config>
<vfs>
<tar name="bash.tar"/>
<dir name="dev"> <terminal/> </dir>

</vfs>
<default-policy root="/" />
<policy label_prefix="/bin/bash" root="/" writeable="yes" />

</config>
<route>
<service name="Terminal"> <child name="terminal"/> </service>
<any-service> <parent/> </any-service>

</route>

The <vfs> node gained the configuration of /dev/terminal. When the VFS encoun-
ters the <terminal> node upon initialization, it will request a session to a “Termi-
nal” service. The added route tells init to route the terminal session towards the
“terminal” component. The added <policy> node defines that a file-system client
labeled as "/bin/bash” is allowed to access the entirety of the VFS in a writeable
fashion.

2. Mount the file system as provided by the VFS server into the VFS of the bash
shell. This way, all files provided by the VFS server become visible in the file
name space of bash. This can be done by extending the <vfs> of bash by adding
an <fs/> node:

<vfs>
<dir name="dev"> <null/> <log/> </dir>
<fs/>

</vfs>

75

5.1 Sticking together a little Unix

When the VFS of bash encounters the <fs/> node, it will request a session to a
“File_system” service. To let this request reach the VFS server, we have to add a
new entry to the <route> definition.

<route>
<service name="File_system"> <child name="vfs"/> </service>
...

</route>

To have a visible effect, let’s redirect the output of the “echo” command executed by
bash to the pseudo file /dev/terminal. Change the bash argument to the following (just
appending the "> /dev/terminal”):

<arg value="echo files at /dev: /dev/* > /dev/terminal"/>

Upon the next attempt of goa run, magic happens:

Figure 2

We have just redirected the output of the bash command to our terminal, which used
our TrueType pseudo-file-system driver to render glyphs on a pixel buffer that, in turn,
was blitted by the nitpicker GUI server to screen. Could our day become any better?
Sure! How about interacting with bash directly?

Change the <libc> configuration of bash to the following:

<libc stdin="/dev/terminal" stdout="/dev/terminal" stderr="/dev/terminal"
rtc="/dev/null"/>

This change wires up the standard input and output of bash with /dev/terminal. Let’s
also drop the -c arguments from the bash <config> so that bash will wait for a com-
mand typed in via stdin. The next goa run will greet us with a shell prompt where we
can type in bash commands like echo:

Figure 3

76

5.1 Sticking together a little Unix

Of course, we feel a sudden urge to also execute the ls command.

Figure 4

The ls command is a separate Unix command that is not yet part of our scenario. It
is covered by the following section.

Adding GNU coreutils The ls command - along with most others we commonly
associate with Unix - are actually little programs that are spawned by the shell each
time when used. When typing ls, bash doesn’t actually know the purpose of ls. It
merely looks up a program named ls and executes it. The program ls, in turn, has
the single purpose of printing directory contents. When executed, it takes a look at the
file system, prints the gathered information, and exits. The ls command together with
its friends cp, mkdir, sort, and many others are the Unix core utilities. On a regular
GNU/Linux system, they are provided by the GNU coreutils1 package.

The GNU coreutils package is readily available for Genode. We can add it by ap-
pending the following line to our pkg/unix/archives file:

genodelabs/src/coreutils

After adding this line, the next invocation of goa run will download the source code
along with a ready-to-use binaries to var/depot/. In particular, you can find the binary
at var/depot/genodelabs/bin/x86_64/coreutils/<version>/. Analogous to the bash package,
described in the beginning of this section, there is a single TAR archive containing all
the files that comprise the coreutils installation.

1https://www.gnu.org/software/coreutils/coreutils.html

77

https://www.gnu.org/software/coreutils/coreutils.html
https://www.gnu.org/software/coreutils/coreutils.html

5.1 Sticking together a little Unix

unix$ tar tf var/depot/genodelabs/bin/x86_64/coreutils/2023-10-24/coreutils.tar
./
./lib/
...
./share/
...
./bin/
./bin/uname
./bin/groups
./bin/dircolors
./bin/chcon
./bin/nproc
./bin/true
./bin/mv
...

We follow the same pattern as previously used for integrating the bash.tar archive.

1. Declaring the use of coreutils.tar as ROM module in the pkg/unix/runtime file’s
<content> node:

<content>
...
<rom label="coreutils.tar"/>

</content>

2. Mounting the coreutils.tar as file system into the VFS of the VFS server. The
VFS server’s <vfs> should now look as follows:

<vfs>
<tar name="bash.tar"/>
<tar name="coreutils.tar"/>
<dir name="dev"> <terminal/> </dir>

</vfs>

As you can see, the VFS supports the mounting any number of file systems side
by side as overlays, which is commonly known as union mounting1.

Remember from the end of the previous section that our attempt to issue ls resulted in
the following message:

1https://en.wikipedia.org/wiki/Union_mount

78

https://en.wikipedia.org/wiki/Union_mount
https://en.wikipedia.org/wiki/Union_mount

5.1 Sticking together a little Unix

Figure 5

Let’s give goa run another go now.

Figure 6

Unlike before, bash has actually found the ls binary on the file system. We mounted
coreutils.tar into the VFS after all, which you can easily reaffirm via cd bin; echo

*. However, bash still failed to spawn the ls program. Genode’s log output reveals
why:

[init -> ...] Error: Could not open ROM session for "/bin/ls"
[init -> ...] Warning: execve: executable binary inaccessible as ROM module

Remember that we have to make a program’s binary available as ROM module in
order to execute it. We have accomplished this via the fs_rom server handing out
file-system content as ROM modules, and directing bash’s request for the "/bin/bash”
ROM module to fs_rom. To recap, we defined the <route> rules for bash as follows:

<route>
<service name="File_system"> <child name="vfs"/> </service>
<service name="ROM" label_last="/bin/bash">
<child name="vfs_rom"/> </service>

<any-service> <parent/> </any-service>
</route>

There is no valid route for a ROM service and the label "/bin/ls” yet. In principle,
we could follow the pattern of the "/bin/bash” ROM. On the other hand, with many
binaries installed at /bin/, the approach would become cumbersome. A better solu-
tion is adding a route that matches the label prefix "/bin”. Changing the <route> of
"/bin/bash” as follows does the trick (pay attention to the third <service> node).

79

5.1 Sticking together a little Unix

<route>
<service name="File_system"> <child name="vfs"/> </service>
<service name="ROM" label_last="/bin/bash">
<child name="vfs_rom"/> </service>

<service name="ROM" label_prefix="/bin">
<child name="vfs_rom"/> </service>

<any-service> <parent/> <any-child/> </any-service>
</route>

In the following, we don’t want to refer to the Unix commands using their full paths
but by their names. So let us set the PATH environment variable in the <config> of
bash’s <start> node.

<config>
..
<env key="PATH" value="/bin"/>

</config>

The next try of goa run yields the following result:

Figure 7

A look at /bin/ reveals the wealth of commands that have just become available at our
finger tips.

Figure 8

Plumbing pipes Let us try to count’em via the wc -l command (wc -l counts the
number of lines).

80

5.1 Sticking together a little Unix

Figure 9

With our attempt of using a pipe, feeding the output of ls -1 via the | symbol as
input into wc -l, we seem to hit another brick wall. But that one isn’t too bad. Until
now, we haven’t yet configured the C runtime of "/bin/bash” (and its child processes)
for the use of a pipe mechanism. We can do so by adding a pipe attribute to the <libc>
node:

<libc stdin="/dev/terminal" stdout="/dev/terminal" stderr="/dev/terminal"
rtc="/dev/null" pipe="/dev/pipe"/>

But /dev/pipe does not exist, you ask! Thanks for paying attention. On traditional
Unix systems, the pipe mechanism is provided by the kernel. On Genode, we provide
it via a pseudo file system that is shared by both ends of the pipe. The path /dev/pipe/ is
the location of this pseudo file system. To make it easily available to all Unix processes,
we have to mount it into the VFS of the VFS server. As a reminder, the <vfs> of the VFS
server currently looks as follows.

<vfs>
<tar name="bash.tar"/>
<tar name="coreutils.tar"/>
<dir name="dev"> <terminal/> </dir>

</vfs>

With the addition of the pipe pseudo file system, we change the <dir name=“dev”>
node into this:

<dir name="dev">
<terminal/>
<dir name="pipe"> <pipe/> </dir>

</dir>

As usual after making such changes, the repeated use of goa run guides us forward:

[init -> unix -> vfs] Error: Could not open ROM session for "vfs_pipe.lib.so"
[init -> unix -> vfs] Error: failed to create <pipe> VFS node

I’m sure, you guess what comes next. Let’s enhance pkg/unix/archives with the fol-
lowing line:

genodelabs/src/vfs_pipe

81

5.1 Sticking together a little Unix

Also declare the “vfs_pipe.lib.so” ROM in our pkg/unix/runtime file:

<content>
...
<rom label="vfs_pipe.lib.so"/>

</content>

With these minor tweaks in place, goa run starts up successfully again. This time,
our attempt to combine ls with wc works as intended!

Figure 10

Life is not complete without Vim To wrap up the Unix experience, let’s add the Vim
text editor to the scenario. The process is rather straight forward and follows exactly
the pattern of the addition of coreutils. That is

1. Add vim to pkg/unix/archives

genodelabs/src/vim

2. Add the “vim.tar: ROM to pkg/unix/runtime

<rom label="vim.tar"/>

3. Mount “vim.tar” at the VFS server

<tar name="vim.tar"/>

Another try of goa run downloads the needed depot content and starts the scenario.
The attempt to start vim results in an error message in the Genode log:

[init -> ...] Error: Could not open ROM session for "ncurses.lib.so"

Vim is the first Unix program that requires ncurses1, which is a library for interactive
terminal applications. To make it available to our system, add genodelabs/src/ncurses
to pkg/unix/archives and <rom label=“ncurses.lib.so”/> to pkg/unix/runtime.

1https://en.wikipedia.org/wiki/Ncurses

82

https://en.wikipedia.org/wiki/Ncurses
https://en.wikipedia.org/wiki/Ncurses

5.1 Sticking together a little Unix

The next test run looks much better. Vim starts up successfully but is not entirely
happy:

Figure 11

Vim relies on the presence of a /tmp/ directory. We can satisfy it by mounting a
memory-backed <ram/> file system in our VFS server by adding the following line
to its <vfs> configuration:

<dir name="tmp"> <ram/> </dir>

Upon the next test run, we are greeted with another error message:

Figure 12

For some tasks like file globbing, Vim spawns a shell as child process and expects
the shell being available as /bin/sh. This default can be overridden via the SHELL envi-
ronment variable. We can set the SHELL environment variable to the value “bash” by
adding the following line to <config> of the "/bin/bash” <start> node:

<env key="SHELL" value="bash"/>

Furthermore, we can tame Vim by overriding its default configuration.
Create a file raw/vimrc with the following content:

set noloadplugins
set hls
set nocompatible
set laststatus=2
set noswapfile
set viminfo=

83

5.1 Sticking together a little Unix

Add a <rom label=“vimrc”/> node to the <content> of pkg/unix/runtime.
Mount the “vimrc” ROM as /share/vim/vimrc file at the VFS server:

<dir name="share"> <dir name="vim"> <rom name="vimrc"/> </dir> </dir>

Finally, we can make ncurses aware of the actual terminal protocol implemented by
Genode’s graphical terminal by setting the environment variable TERM. This enables the
use of colors in Vim. Add the following line to the <config> of the "/bin/bash” <start>
node:

<env key="TERM" value="screen"/>

With these changes, we are greeted with the following screen when starting vim from
the bash shell in our little Unix environment:

Figure 13

We have just crafted a little Unix out of Genode’s generic building blocks. The result
allows us to work with the time-tested an loved Unix core utilities, combine them with
pipes, and edit files with the full comfort of Vim. All that has become possible with less
than 150 lines of XML:

84

5.1 Sticking together a little Unix

$ wc -l raw/unix.config raw/terminal.config pkg/unix/runtime
89 raw/unix.config
10 raw/terminal.config
28 pkg/unix/runtime
121 total

85

5.2 Exporting and publishing

5.2 Exporting and publishing

This section is based on Norman Feske’s article Goa - publishing packets1 at https://genodians.
org.

Let’s follow up on the Unix tutorial from Section 5.1 and make the scenario available
in form of a ready-to-use depot.

In Norman’s Goa playground repository, you can find the results of the Unix tutorial
in the intro directory. This section uses the unix_3rd2 subdirectory as the basis for the
steps described below.

Norman’s Goa playground repository

https://github.com/nfeske/goa-playground

Software-publishing prerequisites In order to provide packaged software to other
Genode users, you will need the following prerequisites:

1. A publicly accessible place on the web where users can download your software
packages from.

2. A PGP key pair to protect the end-to-end integrity of your packages.

This article does not cover the first point as there are so many options when it comes to
web hosting. However, the use of PGP deserves an explanation.

Genode’s depot tools use Open-PGP signatures to ensure that the packages created
by you are bit-for-bit identical to the packages arrived at the user’s system. It works like
this: You as the software provider create an Open-PGP key pair consisting of a private
key and a matching public key. The private key must remain your secret. The public
key should be made publicly available.

You can use your private key to put your digital signature on a package. Nobody
else can forge your signature because the private key is known only to you. Once a
user has downloaded the package, the signature attached to the package can be tested
against the public key. If the package was mutated on the way to the user’s machine,
e. g., the web server was compromised by an attacker, this check would ultimately fail.
The user is saved from the risk of running non-genuine or randomly broken software.
Vice versa, if the signature check succeeds, the user can be certain to have obtained a
bit-for-bit identical copy of the package created by the owner of the private key - the
software provider.

Since you are an aspiring software provider, you ought to have an Open-PGP key
pair.

1https://genodians.org/nfeske/2020-01-16-goa-publish
2https://github.com/nfeske/goa-playground/tree/master/intro/unix_3rd

86

https://genodians.org/nfeske/2020-01-16-goa-publish
https://genodians.org
https://genodians.org
https://github.com/nfeske/goa-playground/tree/master/intro/unix_3rd
https://github.com/nfeske/goa-playground
https://genodians.org/nfeske/2020-01-16-goa-publish
https://github.com/nfeske/goa-playground/tree/master/intro/unix_3rd

5.2 Exporting and publishing

Creating a key pair using GnuPG GnuPG is the go-to implementation of the Open-
PGP standard. It is usually installed by default on GNU/Linux distributions. If you
are already using GPG for encrypting/signing email, you may, in principle, use your
existing key pair. If so, you may skip this section.

To create a new key pair, you can use the following command:

$ gpg --full-generate-key
gpg (GnuPG) 2.2.4; Copyright (C) 2017 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)

Your selection?

Stick to the default (RSA) by hitting enter. Next, you are asked for the key size.

RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (3072)

GnuPG suggests a default key size of 3072 bits. You can add a safety margin by
raising the size to 4096. Next, you are asked to decide for how long you want to use
this key.

Please specify how long the key should be valid.
0 = key does not expire

<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0)

For our use case, there is no point in limiting the key’s lifetime. Press enter to let the
key never expire.

Key does not expire at all
Is this correct? (y/N)

87

5.2 Exporting and publishing

The tool apparently wants to have us think twice about it. Well, typing y gives it the
assurance it desires.

Next, the question about your real name. Well, for the purpose of this tutorial, let’s
use “John K.”.

Real name: John K.

When asked for the email address, it’s technically fine to just fill-in some place holder.
Should you intend to widely publish your public key, e. g., by uploading it to a key

server, please consider using your real identity. You want to be trusted by the users of
your software after all, don’t you? A real identity is certainly more trustworthy than a
random internet person hiding behind a pseudonym.

Email address: a@b.cd

Next, you can leave a comment or leave it blank by pressing enter.

Comment:
You selected this USER-ID:

"John K. <a@b.cd>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit?

After pressing o, you are greeted with a dialog asking for a new passphrase. This
passphrase is used to encrypt your private key before storing it in a file. In the event of
a leak of this file, your private key remains still a secret unless your passphrase becomes
known. Hence, you should better not write down your passphrase but keep it in your
head only. Once you supplied your passphrase, GPG confirms the creation of the new
key pair with a message like this:

...
public and secret key created and signed.

pub rsa4096 2020-01-16 [SC]
96541E89AA71BAA88DF56C538ADB04B1F162AF2D

uid John K. <a@b.cd>
sub rsa4096 2020-01-16 [E]

When inspecting the GPG keyring via the command gpg --list-secret-keys, you
can see the new key listed:

88

5.2 Exporting and publishing

$ gpg --list-secret-keys
...
sec rsa4096 2020-01-16 [SC]

96541E89AA71BAA88DF56C538ADB04B1F162AF2D
uid [ultimate] John K. <a@b.cd>
ssb rsa4096 2020-01-16 [E]

A quick look back at the project we wish to publish To publish the depot content
for a given Goa project, first change to the project directory. For example, within the
goa-playground repository linked above, you would change to the unix_3rd direc-
tory.

$ git clone https://github.com/nfeske/goa-playground.git

$ cd goa-playground/intro/unix_3rd/

Before proceeding, please make sure to use the latest version of the Goa tool.

$ goa update-goa

It is always a good idea to give the project a quick try before publishing it.

$ goa run

Goa will download all the components needed to build the scenario, and execute it
directly on the GNU/Linux development machine. You should see a terminal window
with a bash prompt.

When peeking at the var/public/ directory now, you see the downloaded archives and
signatures. For example,

$ find var/public/genodelabs/bin/x86_64/terminal
var/public/genodelabs/bin/x86_64/terminal
var/public/genodelabs/bin/x86_64/terminal/2023-10-24.tar.xz.sig
var/public/genodelabs/bin/x86_64/terminal/2023-10-24.tar.xz

The sig file is the signature that was created via the private PGP key of Genode Labs
when terminal was originally published. After downloading, Goa verifies the signature
using Genode Labs’ public key that is provided at var/depot/genodelabs/pubkey.

When taking a look at the var/depot/ directory, you see the depot content extracted
from the corresponding tar.xz archives.

89

5.2 Exporting and publishing

Exporting the project to a Genode depot Genode’s package management organizes
software in a so-called depot, which is a directory with a special structure explained in
Secion 3.5. To create depot content for a project, Goa features the goa export com-
mand. Let’s give it a try without a second thought.

$ goa export

Error: missing definition of depot user

You can define your depot user name by setting the ’depot_user’
variable in a .goarc file, or by specifing the ’--depot-user <name>’
command-line argument.

As hinted by the error message, Goa needs to know the name of us as the software
provider. The depot user name will correspond to the subdirectory within the depot
that will host your content. Let us try the command again, but specifying the user
name “john” this time.

$ goa export --depot-user john

Error: version for archive john/raw/unix_3rd undefined

Create a ’version’ file in your project directory, or
define ’set version(john/raw/unix_3rd) <version>’ in your .goarc file.

This time, Goa seems to be happy about the depot user name, but it apparently misses
any version information about the project. Indeed, while following the steps of Section
5.1, we did not talk or think about versions at all. Now it is time to make up our minds
about a suitable version identifier. In principle, any character string will do, as long as
it does not contain anything fancy like whitespace. It is generally a good practice to
just use the current date. Hence, let’s write the version identifier into a new file called
version:

$ echo 2023-11-15 > version

Let’s give goa export another try.

$ goa export --depot-user john

90

5.2 Exporting and publishing

[unix_3rd] exported .../unix_3rd/var/depot/john/raw/unix_3rd/2023-11-15
Error: missing README file at pkg/unix_3rd/README

This looks like a partial success! When inspecting var/depot/ now, you can indeed
find content that looks pretty familiar.

$ ls var/depot/john/raw/unix_3rd/2023-11-15/

terminal.config unix.config vimrc

However, let’s pay attention to the Error: part of the message. By convention,
each depot package features a README file, and Goa nags us to follow this conven-
tion. We have to give in. Create a file at pkg/unix_3rd/README with content of your
choice. The README should contain a short description of the purpose of the package,
along with instructions for using it. Note that future versions of Sculpt OS will present
README texts nicely formatted to the user. We therefore recommend following the
GOSH1 markup syntax, which is consistently used throughout Genode’s documenta-
tion.

With the README file in place, let’s try again:

$ goa export --depot-user john
Error: archive john/raw/unix_3rd/2023-11-15 already exists in the depot

You may specify ’--depot-overwrite’ to replace the existing version.

Goa wants to save us from accidentally overwriting existing depot content, which
can happen, for example, if you made changes in the project but forgot to adjust the
version file. In this case, however, the message results from the partial success above
that already exported raw/unix_3rd. So you are safe to specify the --depot-overwrite
argument as suggested by Goa.

Note, you may alternatively use Goa’s bump-version to change the version. This
command sets the version file to the current date or, if this would not change the ver-
sion, adds/increments an alphabetical suffix.

$ goa export --depot-user john --depot-overwrite

1https://github.com/nfeske/gosh

91

https://github.com/nfeske/gosh
https://github.com/nfeske/gosh

5.2 Exporting and publishing

[unix_3rd] exported .../unix_3rd/var/depot/john/raw/unix_3rd/2023-11-15
[unix_3rd] exported .../unix_3rd/var/depot/john/pkg/unix_3rd/2023-11-15

This time, the command succeeded. To celebrate the success, review the content of
your part - john’s part - of the depot.

$ find var/depot/john/
var/depot/john/
var/depot/john/raw
var/depot/john/raw/unix_3rd
var/depot/john/raw/unix_3rd/2023-11-15
var/depot/john/raw/unix_3rd/2023-11-15/terminal.config
var/depot/john/raw/unix_3rd/2023-11-15/vimrc
var/depot/john/raw/unix_3rd/2023-11-15/unix.config
var/depot/john/pkg
var/depot/john/pkg/unix_3rd
var/depot/john/pkg/unix_3rd/2023-11-15
var/depot/john/pkg/unix_3rd/2023-11-15/archives
var/depot/john/pkg/unix_3rd/2023-11-15/runtime
var/depot/john/pkg/unix_3rd/2023-11-15/README

You can nicely see here how the version file defines the name of the subdirectory of
the content.

Signing and archiving Even though the depot content looks good, it has not yet a
suitable form for distributing it. We ultimately need to wrap the content in archive
files and apply our digital signature to these archives. Fortunately, you don’t need to
do these steps manually since Goa assists with the publish command. This command
implicitly executes the goa export command. So you need to specify all information
that you supplied to export.

$ goa publish --depot-user john --depot-overwrite

[unix_3rd] exported .../unix_3rd/var/depot/john/raw/unix_3rd/2023-11-15
[unix_3rd] exported .../unix_3rd/var/depot/john/pkg/unix_3rd/2023-11-15
Error: missing public key at .../unix_3rd/var/depot/john/pubkey

You may use the ’goa add-depot-user’ command.
To learn more about this command:

goa help add-depot-user

92

5.2 Exporting and publishing

Goa cannot know which key to use for signing the depot content. It only knows the
name of our made-up depot user “john”. But you have not yet drawn the connection
to the PGP key pair you have created at the beginning of this article. The goa add-
depot-user command closes the circle.

$ goa add-depot-user john --depot-url "https://your-domain/and/url" \
--gpg-user-id "a@b.cd" \
--depot-overwrite

The URL specified as --depot-url argument should point to the designated loca-
tion of the archives on your web server. For reference, Genode Labs’ depot URL is
https://depot.genode.org/. Note that the URL points to the root of the depot directory
structure, not the depot user’s subdirectory.

The --gpg-user-id can be any GPG user-ID string as understood by GPG. In the
example above, we used the email address that we specified for the GPG key pair.

The --depot-overwrite argument is specified because Goa tries to prevent us from
accidentally overwriting information of existing depot content, like the content you just
created with the goa export command. It is interesting to take a look at the content of
the depot user “john” now.

$ find var/depot/john/
var/depot/john/
var/depot/john/pubkey
var/depot/john/download

The content you extracted before is no more. Instead, there is a fresh subdirectory
john with the information you supplied to the goa add-depot-user command. Take
the time to look into both files. Goa extracted the ASCII-armored pubkey from the GPG
keyring by using the specified GPG user ID.

With the connection between the depot user “john” and his key pair drawn, let us
give Goa another chance to publish the project.

$ goa publish --depot-user john --depot-overwrite

This time, Goa is able to proceed, as indicated by the following messages:

publish .../var/public/john/pkg/unix_3rd/2023-11-15.tar.xz
publish .../var/public/john/raw/unix_3rd/2023-11-15.tar.xz

93

https://depot.genode.org/

5.2 Exporting and publishing

You are also asked by GPG for your passphrase for decrypting your private key.
Once the command completed, you can find the archived and signed depot content

at var/public/john/:

$ find var/public/john
var/public/john
var/public/john/raw
var/public/john/raw/unix_3rd
var/public/john/raw/unix_3rd/2023-11-15.tar.xz.sig
var/public/john/raw/unix_3rd/2023-11-15.tar.xz
var/public/john/pkg
var/public/john/pkg/unix_3rd
var/public/john/pkg/unix_3rd/2023-11-15.tar.xz.sig
var/public/john/pkg/unix_3rd/2023-11-15.tar.xz

Syncing the public depot content to the web server The entirety of the var/pub-
lic/john directory can now be copied as is to the web server. The way of how this content
is uploaded is up to you.

The fantastic rsync1 tool has proven to be useful for this purpose. You may use the
following combination of arguments:

-rpltOvz --checksum --chmod=Dg+s,ug+w,o-w,+X

Please use man rsync to decrypt this information.

Deployment on Sculpt OS Now that you have published your first Goa project in
your depot, you probably want to give it a spin on Sculpt OS. There are two practical
options for this: You can either create a launcher file at /config/launcher/ or you may
publish a depot index referring to your depot package.

For both options, you need to let Sculpt OS know about from where to download
your depot archives. For a quick test, you may type in your depot URL in the “Add”
tab of the "+" menu. Be aware, however, that this circumvents any integrity checks of
the downloaded archives as your public key still remains unknown to Sculpt.

In order to add your public key to sculpt, you first need to export it from gpg in
ASCII-armored form.

$ gpg --export John > pubkey

1https://en.wikipedia.org/wiki/Rsync

94

https://en.wikipedia.org/wiki/Rsync
https://en.wikipedia.org/wiki/Rsync

5.2 Exporting and publishing

The resulting pubkey needs to be placed alongside the download file that was created
by Sculpt in the depot/john/ directory when you typed in the URL via the Sculpt UI. You
may use the “window manager” preset, which includes the “system shell” terminal ap-
plication for this purpose. In the system shell, you find the user depot at /rw/depot/john/.

Writing a launcher file Manually creating a launcher file is a good option for testing.
The file captures the integration of the deployed component into Sculpt and makes it
easy to adapt the archive version.

Using the system shell or the inspect view in Sculpt, you can create the file /con-
fig/launcher/unix with the following content:

<launcher pkg="john/pkg/unix_3rd/2023-11-15">
<route>
<service name="Gui">

<child name="wm"/>
</service>

</route>
</launcher>

The scenario merely requires a Gui service that we route to the “wm” component
that is deployed by the “window manager” preset. Once the launcher file is in place,
the scenario can be enabled/disabled in the “Options” tab of the "+" menu.

For more details, please consult the Sculpt OS documentation1.

Publishing a depot index A user’s depot index is a curated list of the packages and
their versions provided by the user. Sculpt OS downloads the index and presents the
users with a UI for deploying the referred packages.

Fortunately, Goa assists with managing and publishing a depot index. Let’s give it
a try! In the Goa playground repository, change into the intro/ directory and create the
following index file.

<index>
<supports arch="x86_64"/>

<index name="Tutorial">
<pkg path="unix_3rd" info="Unix terminal from tutorial"/>

</index>
</index>

1https://genode.org/documentation/articles/sculpt-24-10#Runtime_management

95

https://genode.org/documentation/articles/sculpt-24-10#Runtime_management
https://genode.org/documentation/articles/sculpt-24-10#Runtime_management

5.2 Exporting and publishing

This file almost represents your depot index as expected by Sculpt but misses the user
and version information. Goa takes care of adding this information. Please consult goa
help index for more details on the structure of index files.

Placing the index file above the unix_3rd/ directory in the hierarchy enables Goa to
look up the version information from the version file and publish the referenced Goa
projects if necessary. Goa simply scans the subdirectories of the current working direc-
tory for looking up related Goa projects. You can therefore publish your depot index
together with the unix_3rd package with a single command.

intro$ goa publish
[intro] exporting project .../intro/unix_3rd
[unix_3rd] exported .../intro/var/depot/john/raw/unix_3rd/2023-11-15
[unix_3rd] exported .../intro/var/depot/john/pkg/unix_3rd/2023-11-15
...
[intro] exported .../intro/var/depot/john/index/24.04
publish .../intro/var/public/john/pkg/unix_3rd/2023-11-15.tar.xz
publish .../intro/var/public/john/raw/unix_3rd/2023-11-15.tar.xz
publish .../intro/var/public/john/index/24.04.xz

After syncing your depot content to the web server. Users are able to install your
unix_3rd package via the Sculpt UI. Please refer to the Sculpt documentation for more
details.

Sculpt OS documentation

https://genode.org/documentation/articles/sculpt-24-10

96

https://genode.org/documentation/articles/sculpt-24-10

5.3 Writing a VFS plugin for network-packet access

5.3 Writing a VFS plugin for network-packet access

This section reproduces a minimal implementation of the original VFS tap plugin1 with Goa.
The complete implementation is available in the Genode repository.

In Linux and FreeBSD, the kernel provides virtual TAP devices as an interface for
sending/receiving raw Ethernet frames. This section demonstrates how this function-
ality can be added to Genode’s VFS by means of a dedicated plugin.

When porting software from the Unix world to Genode, we try to keep modifications
of the 3rd-party code to a minimum. An essential part of this consists in providing the
required libraries (e. g., libc, stdcxx). But, even with all libraries in place, we also need to
bridge the gap between the Unix viewpoint of “everything is a file (descriptor)" and the
Genode world of session interfaces. This is where the VFS comes into play: Genode’s
C runtime (libc) maps file operations to the component’s VFS. Let’s have a look at a
common example:

<config>
<libc stdout="/dev/log"/>
<vfs>

<dir name="dev"> <log/> </dir>
</vfs>

</config>

This component config tells the libc to use /dev/log for stdout and use the built-in
log plugin of the VFS to “connect” /dev/log to a LOG session. Section 3.3 provides an
overview of libc and VFS configuration.

For writing a VFS plugin for raw network-packet access, let’s first sketch an overview
on how TAP devices are used on FreeBSD/Linux and how this maps to the VFS archi-
tecture.

TAP-device foundations Genode’s C runtime is based on a port of FreeBSD’s libc.
On FreeBSD, we simply open an existing TAP device (e. g. /dev/tap0) and are able to
write/read to the acquired file descriptor afterwards. In addition, there are a few I/O
control operations (ioctl), by which we can get/set the MAC address or get the device
name for instance. Let’s look at an example:

1https://genodians.org/jschlatow/2022-03-01-vfs-tap

97

https://genodians.org/jschlatow/2022-03-01-vfs-tap
https://genodians.org/jschlatow/2022-03-01-vfs-tap

5.3 Writing a VFS plugin for network-packet access

#include <net/if.h>
#include <net/if_tap.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <stdint.h>

int main()
{

int fd0 = open("/dev/tap0", O_RDWR);
if (fd0 == -1) {

printf("Error: open(/dev/tap0) failed\n");
return 1;

}

char mac[6];
memset(mac, 0, sizeof(mac));
if (ioctl(fd0, SIOCGIFADDR, (void *)mac) < 0) {

printf("Error: Could not get MAC address of /dev/tap0.\n");
} else {

printf("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", mac[0], mac[1], mac[2],
mac[3], mac[4], mac[5]);

}

enum { BUFFLEN = 1500 };
char buffer[BUFFLEN];
while (1) {

ssize_t received = read(fd0, buffer, BUFFLEN);
if (received < 0) {

close(fd0);
return 1;

}

printf("Received packet with %d bytes\n", received);
size_t i=0;
uint32_t *words = (uint32_t*)buffer;
for (; i < received / 4; i++) {

printf("%08x ", *words++);

if (i % 4 == 3)
printf("\n");

}

uint8_t *bytes = (uint8_t*)&buffer[i*4];
for (i*=4; i < received; i++)

printf("%02x", *bytes++);

printf("\n");
}

}

98

5.3 Writing a VFS plugin for network-packet access

This application code receives Ethernet frames from tap0 and prints out the data. For
demonstrative purpose, there is also an ioctl call for getting the MAC address of tap0.
A detailed description of TAP devices in FreeBSD is given in the corresponding man
page1.

Architecture Before diving into the VFS, let’s draw a high-level picture of how Gen-
ode’s C runtime maps file operations to the VFS.

VFS

/dev/terminal
.terminal/

/dev/tap0
.tap0/

C Runtime
write, queue_read, complete_read, read_ready, notify_read_ready

File I/O Service

Application
open, ioctl, read, write, close

Terminal Plugin

/terminal
/.terminal/info

columns
rows
interrupts

Tap Plugin

/tap0
/.tap0/info

...Terminal NIC Router

nic/uplink sessionterminal session

The figure above illustrates the plugin structure of the VFS. A plugin provides one or
multiple files (e. g. _/dev/tap0) that are incorporated into the directory tree of the VFS.
The application is then able to perform the standard file operations on these files. The
VFS plugin typically translates these operations into operations on a particular session
interface. The C runtime also emulates ioctl by mapping these to read/write accesses
of pseudo files (e. g. /dev/.tap0/...) as described in the corresponding release notes2 and
commit message3.

By convention, an info file (e. g. /dev/.tap0/info) hosts an XML report containing a
single XML node named after the plugin type. The node may comprise any number of
attributes to specify parameters needed by the C runtime to implement the particular
ioctl, e. g.:

<tap name="tap0" mac_addr="02:02:02:02:02:02"/>

1https://man.freebsd.org/cgi/man.cgi?tap(4)
2https://genode.org/documentation/release-notes/20.11#Streamlined_ioctl_handling_in_the_C_

runtime___VFS
3https://github.com/genodelabs/genode/commit/7ac32ea60

99

https://man.freebsd.org/cgi/man.cgi?tap(4)
https://man.freebsd.org/cgi/man.cgi?tap(4)
https://genode.org/documentation/release-notes/20.11#Streamlined_ioctl_handling_in_the_C_runtime___VFS
https://github.com/genodelabs/genode/commit/7ac32ea60
https://man.freebsd.org/cgi/man.cgi?tap(4)
https://genode.org/documentation/release-notes/20.11#Streamlined_ioctl_handling_in_the_C_runtime___VFS
https://genode.org/documentation/release-notes/20.11#Streamlined_ioctl_handling_in_the_C_runtime___VFS
https://github.com/genodelabs/genode/commit/7ac32ea60

5.3 Writing a VFS plugin for network-packet access

In case parameters shall be modifiable, the info file can be accompanied by a separate
(writeable) file for each modifiable parameter.

The C runtime takes care of emulating the blocking semantics of read/write oper-
ations. Internally, the C runtime uses the non-blocking Vfs::File_io_service in-
terface to perform read/write accesses on the VFS. The write() operation returns an
error if writing cannot be performed immediately. Reads are split into queue_read()
and complete_read() methods. In order to avoid futile polling, the latter are accom-
panied by a read_ready() method, which returns true if there is readable data, and a
notify_read_ready() method by which one is able to announce interest in receiving
read-ready signals. Moreover, a write_ready() method propagates the saturation of
I/O buffers to the VFS user, which becomes important when using non-blocking file
descriptors.

Usage preview Before we start coding, let’s envision how we want to use the plugin:

<config>
<vfs>

<dir name="dev">
<tap name="tap0" label="tap"/>

</dir>
</vfs>

</config>

In the above example, we mount the plugin at the /dev/tap0 file. The name attribute
of the <tap> node is mandatory. The plugin shall use a NIC session to transmit the
Ethernet frames to a NIC router. The label attribute can be used to distinguish multiple
session requests at the NIC router.

Creating a new Goa project Let’s start with preparing the stage for the plugin by
starting a new Goa project.

$ mkdir -p vfs_tap/src
$ cd vfs_tap

The VFS library uses the type of the XML node to determine the name of the plugin
library to probe. More precisely, when adding a <tap> node to the config, the VFS tries
to load a vfs_tap.lib.so. Hence, we need to tell the build system to create a shared library
with this name. Currently, Goa only supports library projects based on CMake. Thus,
you need to create the file src/CMakeLists.txt with the following content:

100

5.3 Writing a VFS plugin for network-packet access

cmake_minimum_required(VERSION 3.10)
project(vfs_tap)
set(LIB_SRCS vfs_tap.cc)
add_library(vfs_tap SHARED ${LIB_SRCS})
set_target_properties(vfs_tap PROPERTIES PREFIX "")

The first two lines are mandatory for CMake. Line 3-4 define the library build target
and vfs_tap.cc as the only source file. The last line removes the default “lib” prefix.
Without this line, the build artifact would be named libvfs_tap.lib.so.

Writing the vfs_tap plugin Now, let’s add the first few lines to src/vfs_tap.cc:

namespace Vfs {
struct Tap_file_system;

}

struct Vfs::Tap_file_system
{

using Name = String<64>;

struct Compound_file_system;
struct Local_factory;
struct Data_file_system;

};

/* [...] see below */

extern "C" Vfs::File_system_factory *vfs_file_system_factory(void)
{

struct Factory : Vfs::File_system_factory
{

Vfs::File_system

*create(Vfs::Env &env, Genode::Xml_node config) override
{

return new (env.alloc())
Vfs::Tap_file_system::Compound_file_system(env, config);

}
}

static Factory f;
return &f;

}

From the forward declarations, you can already see that the Tap_file_system is
composed of three parts: a Compound_file_system, a Local_factory and a Data_file_system.

101

5.3 Writing a VFS plugin for network-packet access

This is a scheme that we commonly apply when writing VFS plugins. Let’s walk
through each of those step by step. Note that you could also make Tap_file_system a
namespace rather than a struct. The subtle difference here is that the struct emphasizes
the inextensibility.

The plugin’s entrypoint is the vfs_file_system_factory method that returns a
File_system_factory by which the VFS is able to create a File_system from the cor-
responding XML node (e. g. <tap name=“tap0”/>). We return a Compound_file_system
which serves as a top-level file system and which is able to instantiate arbitrary sub-
directories and files on its own by using VFS primitives. Let’s have a closer look:

102

5.3 Writing a VFS plugin for network-packet access

class Vfs::Tap_file_system::Compound_file_system
: private Local_factory, public Vfs::Dir_file_system
{

private:

typedef Tap_file_system::Name Name;

typedef String<200> Config;
static Config _config(Name const &name)
{

char buf[Config::capacity()] { };

Genode::Xml_generator xml(buf, sizeof(buf), "compound", [&] () {

xml.node("data", [&] () {
xml.attribute("name", name); });

xml.node("dir", [&] () {
xml.attribute("name", Name(".", name));
xml.node("info", [&] () {});

});
});

return Config(Genode::Cstring(buf));
}

public:

Compound_file_system(Vfs::Env &vfs_env, Genode::Xml_node node)
:

Local_factory(vfs_env, node),
Vfs::Dir_file_system(vfs_env, Xml_node(

_config(Local_factory::name(node)).string()
), *this)

{ }

static const char *name() { return "tap"; }

char const *type() override { return name(); }
};

The Compound_file_system is a Dir_file_system and a Local_factory. The for-
mer allows us to create a nested directory structure from XML as we are used to when
writing a component’s <vfs> config. In this case, the static _config() method gener-
ates the following XML:

103

5.3 Writing a VFS plugin for network-packet access

<compound>
<data name="tap0"/>
<dir name=".tap0">

<info/>
</dir>

</compound>

The type of the root node has no particular meaning, yet, since it is not “dir”, it
instructs the Dir_file_system to allow multiple sibling nodes to be present at the
mount point. In particular, this is a data file system and a subdirectory containing an
info file system. The latter has a static name, whereas the subdirectory and data file
system are named after what the implementation of Local_factory::name() returns
(e. g. “tap0”). Already knowing how the C runtime interacts with the VFS, we can
identify that the data file system shall provide read/write access to our virtual TAP
device whereas the subdirectory is used for ioctl support. The info file system follows
the aforementioned convention and provides a file containing a <tap> XML node with
a name attribute.

Note, the type() method is part of the File_system interface and must return the
XML node type to which the plugin responds.

Next, we must implement the Local_factory. As the name suggest, it is responsible
for instantiating the file systems that we used in the Compound_file_system, i. e. the
data and info file system:

struct Vfs::Tap_file_system::Local_factory : File_system_factory
{

Vfs::Env &_env;

Name const _name;
Data_file_system _data_fs { _env.env(), _env.user(), _name };

/* [...] see below */

In the first few lines of Local_factory, you see the instantiation of the data file sys-
tem. You have already seen the forward declaration of Data_file_system in the be-
ginning. We will come back to this after we completed the Local_factory. Let’s first
continue with the info file system:

104

5.3 Writing a VFS plugin for network-packet access

struct Vfs::Tap_file_system::Local_factory : File_system_factory
{

/* [...] see above */

struct Info
{

Name const &_name;

Info(Name const & name)
: _name(name)
{ }

void print(Genode::Output &out) const
{

char buf[128] { };
Genode::Xml_generator xml(buf, sizeof(buf), "tap", [&] () {

xml.attribute("name", _name);
});
Genode::print(out, Genode::Cstring(buf));

}
};

Info _info { _name };
Readonly_value_file_system<Info> _info_fs { "info", _info };

/* [...] see below */

For the info file system, we use the Readonly_value_file_system template from os-
/include/vfs/readonly_value_file_system.h. As the name suggests, it provides a file system
with a single read-only file that contains the value of the given type. More precisely,
the string representation of its value. In case of the info file system, we want to fill
the file with <tap name="...”/>. Knowing that we are able to convert any object to
Genode::String by defining a print(Genode::Output) method, we can use the Info
struct as a type for Readonly_value_file_system and customize its string represen-
tation at the same time.

The remaining fragment of the Local_factory comprises the constructor, an acces-
sor for reading the device name from the <tap> node and the File_system_factory
interface.

105

5.3 Writing a VFS plugin for network-packet access

struct Vfs::Tap_file_system::Local_factory : File_system_factory
{

/* [...] see above */

Local_factory(Vfs::Env &env, Xml_node config)
:

_env(env),
_name(name(config))

{ }

static Name name(Xml_node config)
{

return config.attribute_value("name", Name("tap"));
}

/***********************
** Factory interface **
***********************/

Vfs::File_system *create(Vfs::Env&, Xml_node node) override
{

if (node.has_type("data")) return &_data_fs;
if (node.has_type("info")) return &_info_fs;

return nullptr;
}

};

The create() method is the more interesting part. Here, it returns either the data
or info file system depending on the XML node type. The function is called by the
Dir_file_system on the XML config defined by the Compound_file_system.

Note that mutable parameters need to be provided as additional writeable files along
with the info file. For this purpose, you may use the Value_file_system template from
os/include/vfs/value_file_system.h together with Genode::Watch_handler to react to file
modifications.

The last missing piece of our puzzle is the Data_file_system. Luckily, there is no
need to take a deep dive into the VFS internals because Vfs::Single_file_system
comes to the rescue. It already implements big parts of the Directory_service and
the File_io_service interface, and leaves only a handful methods to be implemented
by Data_file_system. Let’s have a look at the first fragment:

106

5.3 Writing a VFS plugin for network-packet access

class Vfs::Tap_file_system::Data_file_system : public Vfs::Single_file_system
{

private:

struct Tap_vfs_handle : Single_vfs_handle
{

/* [...] see below */
};

using Registered_handle = Genode::Registered<Tap_vfs_handle>;
using Handle_registry = Genode::Registry<Registered_handle>;
using Open_result = Directory_service::Open_result;

Genode::Env &_env;
Handle_registry _handle_registry { };

public:

Data_file_system(Genode::Env & env,
Vfs::Env::User & vfs_user,
Name const & name)

:
Vfs::Single_file_system(Node_type::TRANSACTIONAL_FILE, name.string(),

Node_rwx::rw(), Genode::Xml_node("<data/>")),
_env(env)

{ }

static const char *name() { return "data"; }
char const *type() override { return "data"; }

/* [...] see below */

Let’s skip the details of Tap_vfs_handle for the moment. You see that we use a
Genode::Registry to manage the Tap_vfs_handle. The Single_file_system con-
structor takes a node type, a name, an access mode and an Xml_node as arguments. For
the node type, you can choose between CONTINUOUS_FILE and TRANSACTIONAL_FILE.
Since a network packet is supposed to be written as a whole and not in arbitrary chunks,
we must choose TRANSACTIONAL_FILE here. The file name is determined from the pro-
vided XML node by looking up a name parameter. Here, we pass an empty <data/>
node, in which case, the Single_file_system uses the second argument as a file name
instead.

Let’s continue with completing the Directory_service interface:

107

5.3 Writing a VFS plugin for network-packet access

class Vfs::Tap_file_system::Data_file_system : public Vfs::Single_file_system
{

private:

/* [...] see above */

public:

/* [...] see above */

/*********************************
** Directory service interface **
*********************************/

Open_result open(char const *path, unsigned flags,
Vfs_handle **out_handle,
Allocator &alloc) override

{
if (!_single_file(path))

return Open_result::OPEN_ERR_UNACCESSIBLE;

unsigned handles = 0;
_handle_registry.for_each([&handles] (Tap_vfs_handle const &) {

handles++;
});
if (handles) return Open_result::OPEN_ERR_EXISTS;

try {

*out_handle = new (alloc)
Registered_handle(_handle_registry, _env, _vfs_user, alloc,

*this, *this, flags);
return Open_result::OPEN_OK;

}
catch (Genode::Out_of_ram) {

return Open_result::OPEN_ERR_OUT_OF_RAM; }
catch (Genode::Out_of_caps) {

return Open_result::OPEN_ERR_OUT_OF_CAPS; }
}

}

The only method of the Directory_service interface not implemented by Single_file_system
is the open() method. First, we use a helper method _single_file to check whether
the correct path was given. Second, we ensure that the file has not been opened yet
since the FreeBSD man page says that a TAP device is exclusive-open. Third, we allo-
cate a new Tap_vfs_handle, which is conveniently put into the _handle_registry by

108

5.3 Writing a VFS plugin for network-packet access

using the Genode::Registered wrapper. The latter also takes care that the handle is
removed from the registry on destruction.

The read and write operations are part of the File_io_service interface. This in-
terface is already implemented by Single_file_system, which forwards most meth-
ods to Single_vfs_handle. Let’s thus look at Tap_vfs_handle, which implements
the read and write operations and translates them to the NIC session interface (details
omitted for conciseness). Note that Single_file_system forwards complete_read()
to the handle’s read() method and always returns true for queue_read().

109

5.3 Writing a VFS plugin for network-packet access

class Tap_vfs_handle : public Single_file_system::Single_vfs_handle
{

private:

using Read_result = File_io_service::Read_result;
using Write_result = File_io_service::Write_result;

Genode::Io_signal_handler<Tap_vfs_handle> _read_avail_handler {
_env.ep(), *this, &Tap_vfs_handle::_handle_read_avail };

bool _notifying = false;
bool _blocked = false;

void _handle_read_avail()
{

if (!read_ready()) return;

if (_blocked) {
_blocked = false;
_vfs_user.wakeup_vfs_user();

}

if (_notifying) {
_notifying = false;
read_ready_response();

}
}

public:

Tap_vfs_handle(Genode::Env &env,
Vfs::Env::User &vfs_user,
Allocator &alloc,
Directory_service &ds,
File_io_service &fs,
int flags)

: Single_vfs_handle { ds, fs, alloc, flags },
_env(env), _vfs_user(vfs_user), _nic(/* ... */)

{
_nic.rx_channel()->sigh_ready_to_ack(_read_avail_handler);
_nic.rx_channel()->sigh_packet_avail(_read_avail_handler);

}

bool notify_read_ready() override
{

_notifying = true;
return true;

}
/* [...] (see below) */

};
110

5.3 Writing a VFS plugin for network-packet access

The Tap_vfs_handle defines an signal-handler method _handle_read_avail() that
notifies the C runtime or the VFS server of any progress. There are two types of progress
notifications: I/O progress and read ready. The latter we have already come across
when mentioning the notify_read_ready() method of the File_io_service. In this
implementation, we issue a read-ready response whenever the notify_read_ready()
was called before on this file handle. Similarly, we keep track of whether a read()
operation is unable to complete via the _blocking member variable. By calling
wakeup_vfs_user(), the C runtime is notified of the fact that there was I/O progress,
and it may retry the read operation. Note that the C runtime stalls any application-
level signals when in a blocking operation, hence the _read_avail_handler must be
declared as Io_signal_handler.

111

5.3 Writing a VFS plugin for network-packet access

class Tap_vfs_handle : public Single_file_system::Single_vfs_handle
{

/* [...] (see above) */

bool read_ready() const override
{

/* [...] */
}

bool write_ready() const override
{

/* [...] */
}

Read_result read(char *dst, file_size count,
file_size &out_count) override

{
if (!read_ready()) {

_blocked = true;
return Read_result::READ_QUEUED;

}

/* [...] */

return Read_result::READ_OK;
}

Write_result write(char const *src, file_size count,
file_size &out_count) override

{
if (!_nic.tx()->ready_to_submit())

return Write_result::WRITE_ERR_WOULD_BLOCK;

/* [...] */

return Write_result::WRITE_OK;
}

};

The last ingredient is inserting the proper result types: While READ_OK and WRITE_OK
are self-explanatory, there are two common result types for unsuccessful reads/writes.
On the one hand, READ_QUEUED indicates that a previously queued read cannot be com-
pleted. On the other hand, we may return WRITE_ERR_WOULD_BLOCK if, e. g., the submit
queue of the NIC session’s transmit channel is full.

112

5.3 Writing a VFS plugin for network-packet access

Building the VFS library with Goa With the source code in place, you can try build-
ing the plugin with Goa. For this purpose, Goa needs to know what APIs are used by
the source code. This is achieved by listing them in the used_apis file. It’s a good practice
to start with the most obvious ones.

vfs_tap$ cat used_apis
genodelabs/api/base
genodelabs/api/os
genodelabs/api/vfs
genodelabs/api/nic_session

Now, create an artifacts file mentioning vfs_tap.lib.so and try goa build:

vfs_tap$ echo "vfs_tap.lib.so" > artifacts
vfs_tap$ goa build
[vfs_tap] Error: no version defined for depot archive
’genodelabs/api/nic_session’

Apparently, Goa lacks any version information for the NIC session API. This infor-
mation can be added by the following line in a goarc file.

set version(genodelabs/api/nic_session) 2023-11-29

Now, give goa build another try:

vfs_tap$ goa build
...
[vfs_tap:cmake] [100%] Linking CXX shared library vfs_tap.lib.so
[...]/ld: cannot find -l:ldso_so_support.lib.a: No such file or directory

Oh yes, building a shared library requires adding the so API to the used_apis file.

vfs_tap$ echo "genodelabs/api/so" >> used_apis
vfs_tap$ goa build
[vfs_tap:cmake] -- Configuring done (0.0s)
[vfs_tap:cmake] -- Generating done (0.0s)
[vfs_tap:cmake] -- Build files have been written to: [...]/var/build/x86_64
[vfs_tap:cmake] [50%] Building CXX object
CMakeFiles/vfs_tap.dir/vfs_tap.cc.obj

[vfs_tap:cmake] [100%] Linking CXX shared library vfs_tap.lib.so
[vfs_tap:cmake] [100%] Built target vfs_tap
[vfs_tap] Error: missing symbols file ’vfs_tap’

You can generate this file by running ’goa extract-abi-symbols’.

113

5.3 Writing a VFS plugin for network-packet access

Well, Goa noticed that you are building a shared library object and expects a symbols
file. Usually, when we create a library with Goa, we also want to export an API archive
which comprises the header files and the exported symbols to allow linking against the
library’s ABI. This, however, is not needed for a VFS plugin library. You may therefore
use an empty symbols file to satisfy Goa.

vfs_tap$ mkdir symbols
vfs_tap$ touch symbols/vfs_tap
vfs_tap$ goa build
...
[vfs_tap:cmake] [100%] Built target vfs_tap

Yay, you’ve successfully built the VFS plugin.

Testing the plugin Let’s create a simple test application that uses the VFS plugin. For
this, you need a separate project directory with a src subdirectory:

vfs_tap$ mkdir -p test-vfs_tap/src

You’ll also need to use the same depot dir, which can be achieved by adding the
following lines to the goarc file:

vfs_tap$ echo "set depot_dir ./var/depot" >> goarc
vfs_tap$ echo "set public_dir ./var/public" >> goarc

With these settings in place, you are able to export your vfs_tap archive. Let’s as-
sume your depot user is “john”. Don’t forget to initialize the version file and to add a
LICENSE file. You may start with an empty file for testing:

vfs_tap$ goa bump-version
vfs_tap$ touch LICENSE
vfs_tap$ goa export --depot-user john
[vfs_tap] exported [...]/var/depot/john/src/vfs_tap/2024-08-02
[vfs_tap] exported [...]/var/depot/john/bin/x86_64/vfs_tap/2024-08-02

Now, you need to add some code for the test application. Simply use the example
code from the very beginning of this section and place it in the file test-vfs_tap/src/test-
vfs_tap.cc. Also add a Makefile, an artifacts file and a used_apis file:

114

5.3 Writing a VFS plugin for network-packet access

vfs_tap$ echo "test-vfs_tap: test-vfs_tap.cc" > test-vfs_tap/src/Makefile
vfs_tap$ echo "test-vfs_tap" > test-vfs_tap/artifacts
vfs_tap$ echo "genodelabs/api/libc" > test-vfs_tap/used_apis
vfs_tap$ echo "genodelabs/api/posix" >> test-vfs_tap/used_apis

In order to run the test application, you need to define a runtime scenario. The Gen-
ode repository contains a ping application that you can use for generating some net-
work traffic. When both, the ping component and the test application connect to the
same domain of a NIC router, you should be able to see some output of the test appli-
cation. For this purpose, create the following runtime file at test-vfs_tap/pkg/test-vfs_tap:

115

5.3 Writing a VFS plugin for network-packet access

<runtime ram="20M" caps="1000" binary="init">
<requires> <timer/> </requires>

<config>
<parent-provides>

<service name="PD"/>
<service name="CPU"/>
<service name="LOG"/>
<service name="ROM"/>
<service name="Timer"/>

</parent-provides>

<default caps="100"/>
<default-route>

<service name="Nic"> <child name="nic_router"/> </service>
<any-service> <parent/> </any-service>

</default-route>

<start name="test-vfs_tap">
<resource name="RAM" quantum="8M"/>
<config>

<libc stdout="/dev/log"/>
<vfs>

<dir name="dev"> <log/>
<tap name="tap0"/> </dir>

</vfs>
</config>

</start>

<start name="nic_router">
<resource name="RAM" quantum="2M"/>
<provides> <service name="Nic"/>

<service name="Uplink"/> </provides>
<config verbose_domain_state="yes" verbose="yes">

<default-policy domain="default"/>
<domain name="default" interface="10.0.2.1/24"/>

</config>
</start>

<start name="ping">
<resource name="RAM" quantum="4M"/>
<config interface="10.0.2.2/24" gateway="10.0.2.1"

dst_ip="10.0.2.123" period_sec="5" verbose="no"/>
</start>

</config>

<!-- [...] see below -->
</runtime>

116

5.3 Writing a VFS plugin for network-packet access

<runtime>
<!-- [...] see above -->

<content>
<rom label="test-vfs_tap"/>
<rom label="libc.lib.so"/>
<rom label="libm.lib.so"/>
<rom label="posix.lib.so"/>
<rom label="vfs.lib.so"/>
<rom label="vfs_tap.lib.so"/>
<rom label="ping"/>
<rom label="nic_router"/>

</content>

</runtime>

Goa also needs to know in what archives it can find the content ROM modules
mentioned in the runtime file. This is achieved by the following archives file at test-
vfs_tap/pkg/test-vfs_tap:

genodelabs/src/init
genodelabs/src/libc
genodelabs/src/vfs
genodelabs/src/posix
genodelabs/src/nic_router
john/src/vfs_tap
jschlatow/src/ping/2024-04-11

Now, you can give the test scenario a try:

vfs_tap$ goa run -C test-vfs_tap/
Genode sculpt-24.04
17592186044415 MiB RAM and 18997 caps assigned to init
[init -> test-vfs_tap -> nic_router] [default] static IP config: interface ...
[init -> test-vfs_tap -> nic_router] [default] NIC sessions: 0
[init -> test-vfs_tap -> nic_router] [default] initiated domain
[init -> test-vfs_tap -> nic_router] [default] NIC sessions: 1
[init -> test-vfs_tap -> nic_router] [default] NIC sessions: 2
[init -> test-vfs_tap -> test-vfs_tap] MAC: 02:02:02:02:02:02
[init -> test-vfs_tap -> nic_router] [default] forward ARP request for local
IP to all interfaces of the sender domain

[init -> test-vfs_tap -> test-vfs_tap] Received packet with 42 bytes
[init -> test-vfs_tap -> test-vfs_tap] ffffffff 0202ffff 01020202 01000608
[init -> test-vfs_tap -> test-vfs_tap] 04060008 02020100 01020202 0202000a
[init -> test-vfs_tap -> test-vfs_tap] ffffffff 000affff 027b

117

5.3 Writing a VFS plugin for network-packet access

Excellent! The complete code of this tutorial is available on github1. The official
implementation of the vfs_tap plugin is part of the Genode repository2.

1https://github.com/jschlatow/goa-projects/tree/master/examples/vfs_tap
2https://github.com/genodelabs/genode/tree/master/repos/os/src/lib/vfs/tap

118

https://github.com/jschlatow/goa-projects/tree/master/examples/vfs_tap
https://github.com/genodelabs/genode/tree/master/repos/os/src/lib/vfs/tap
https://github.com/jschlatow/goa-projects/tree/master/examples/vfs_tap
https://github.com/genodelabs/genode/tree/master/repos/os/src/lib/vfs/tap

5.4 Porting Lomiri Calculator App

5.4 Porting Lomiri Calculator App

This section is based on the article1 at https://genodians.org.
Since the port of Ubuntu UI Toolkit to Genode2, Ubuntu Touch apps can be ported to

Genode. After Canonical dropped support for Ubuntu Touch, the toolkit was adopted
by UBports as a community project and renamed to Lomiri UI Toolkit.

The port of the toolkit is available in the genode-world repository (see Section 3.7.3).
Ready-to-use depot archives can be found in Sebastian Sumpf’s depot3.

This section walks through the porting procedure of the Lomiri Calculator App4 and
thereby serves as a blueprint for porting other apps from the toolkit.

Creating a new Goa project Every Goa project resides in a separate directory (they
can be nested, though). Goa automatically determines whether a directory is a project
directory based on its content. Goa uses the name of the directory as a project name.

Starting a new Goa project merely consists in creating a separate directory at an arbi-
trary location and supplementing directory content that is considered by Goa.

$ mkdir calculator

Importing the source code As a first step, you need to import the app’s source code.
For this, you simply create an import file with the following content:

LICENSE := GPLv3
VERSION := 3.3.7
DOWNLOADS := calc.archive

APPS_URL := https://gitlab.com/ubports/development/apps/
BASE_URL := $(APPS_URL)/lomiri-calculator-app/-/archive/
URL(calc) := $(BASE_URL)/v$(VERSION)/lomiri-calculator-app-v$(VERSION).tar.gz
SHA(calc) := 821f045e9cdb5f26145f60c53bf92f96ba81a563c0a0fec72ee1cdfccc0a9f88
DIR(calc) := src

Syntactically, the file is a makefile that merely defines a couple of variables docu-
mented by goa help import. With the above definitions, you are importing the source
code from a tar archive. The tool also supports git and svn. Note that the app version
3.3.7 was the last version before Ubuntu UI Toolkit got renamed to Lomiri.

With the import file present, you are able to run goa import, which places the source
code into the src/ subdirectory.

1https://genodians.org/jschlatow/2024-01-11-lomiri-calculator-porting
2https://genodians.org/ssumpf/2023-05-06-ubunutu_ui
3https://depot.genode.org/ssumpf
4https://gitlab.com/ubports/development/apps/lomiri-calculator-app/

119

https://genodians.org/jschlatow/2024-01-11-lomiri-calculator-porting
https://genodians.org
https://genodians.org/ssumpf/2023-05-06-ubunutu_ui
https://depot.genode.org/ssumpf
https://gitlab.com/ubports/development/apps/lomiri-calculator-app/
https://genodians.org/jschlatow/2024-01-11-lomiri-calculator-porting
https://genodians.org/ssumpf/2023-05-06-ubunutu_ui
https://depot.genode.org/ssumpf
https://gitlab.com/ubports/development/apps/lomiri-calculator-app/

5.4 Porting Lomiri Calculator App

calculator$ goa import
import download https://gitlab.com/ubports/[...]/lomiri-calculator-app

/-/archive//v3.3.7/lomiri-calculator-app-v3.3.7.tar.gz
import extract lomiri-calculator-app-v3.3.7.tar.gz (calc)
import generate import.hash

In case the source code needs some adaptations, Goa is able to apply patches during
import (see goa help import for more details). For convenience, goa diff lets you
easily create a patch for your local modifications.

Building the application Goa supports various commodity build systems such as
GNU Make, autoconf, CMake, qmake and Cargo (see goa help build-systems for
more details). Fortunately, the calculator app is based on CMake, hence let’s try running
goa build:

calculator$ goa build
[calculator] Error: [...] has a ’src’ directory but lacks an ’artifacts’ file.

You may start with an empty file.

As mentioned in Section 3.5, Goa requires an artifacts file to build a binary archive so
let’s do as suggested and create an empty one.

calculator$ touch artifacts
calculator$ goa build
...
CMake Error at CMakeLists.txt:16 (find_package):
By not providing "FindQt5Core.cmake" in CMAKE_MODULE_PATH this project has
asked CMake to find a package configuration file provided by "Qt5Core", but
CMake did not find one.

Could not find a package configuration file provided by "Qt5Core" with any
of the following names:

Qt5CoreConfig.cmake
qt5core-config.cmake

Add the installation prefix of "Qt5Core" to CMAKE_PREFIX_PATH or set
"Qt5Core_DIR" to a directory containing one of the above files. If
"Qt5Core" provides a separate development package or SDK, be sure it has
been installed.

[calculator:cmake] -- Configuring incomplete, errors occurred!

120

5.4 Porting Lomiri Calculator App

Apparently, CMake is unable to locate Qt5Core. The error message suggests provid-
ing a file named FindQt5Core.cmake. Goa is able to locate these files in the used API
archives. Knowing that Qt5Core is part of the qt5_base archive, let’s add this to the
used_apis file.

calculator$ echo ’ssumpf/api/qt5_base’ > used_apis
[lomiri-calculator-app] Error: no version defined for depot

archive ’ssumpf/api/qt5_base’

Well, since Goa only comes with the version information of official archives from the
genodelabs depot, you have to provide the version information. This is achieved by
adding the version definition in a goarc file:

calculator$ echo ’set version(ssumpf/api/qt5_base) 2024-04-18’ >> goarc
calculator$ goa build
...
CMake Error at CMakeLists.txt:17 (find_package):
By not providing "FindQt5Qml.cmake" in CMAKE_MODULE_PATH this project has
asked CMake to find a package configuration file provided by "Qt5Qml", but
CMake did not find one.

Could not find a package configuration file provided by "Qt5Qml" with any
of the following names:

Qt5QmlConfig.cmake
qt5qml-config.cmake

Add the installation prefix of "Qt5Qml" to CMAKE_PREFIX_PATH or set
"Qt5Qml_DIR" to a directory containing one of the above files. If "Qt5Qml"
provides a separate development package or SDK, be sure it has been
installed.

[calculator:cmake] -- Configuring incomplete, errors occurred!

Qt5Qml is part of the qt5_declarative archive. Let’s add the corresponding API archive
and version information:

121

5.4 Porting Lomiri Calculator App

calculator$ echo ’ssumpf/api/qt5_declarative’ >> used_apis
calculator$ echo ’set version(ssumpf/api/qt5_declarative) 2024-02-25’ >> goarc
calculator$ goa build
...
[calculator:cmake] -- Build files have been written to:

/.../goa-projects/calculator/var/build/x86_64
...
[calculator:cmake] [98%] Built target com_ubuntu_calculator_translation_files
[calculator:cmake] [100%] Built target pofiles_84
[calculator:cmake] Install the project...
[calculator:cmake] -- Install configuration: ""
[calculator:cmake] -- Installing: //manifest.json
CMake Error at cmake_install.cmake:49 (file):
file INSTALL cannot copy file
"/.../goa-projects/calculator/var/build/x86_64/manifest.json" to
"//manifest.json": Permission denied.

make: *** [Makefile:110: install] Error 1
[calculator] Error: install via cmake failed:
child process exited abnormally

Yikes, the build succeeded but the installation failed writing to the file-system root.
This is puzzling because Goa calls cmake install with CMAKE_INSTALL_PREFIX=
/.../var/build/<arch>/install/. Looking at src/CMakeFile.txt reveals the CLICK_MODE
option, which sets CMAKE_PREFIX_PATH to /. Fortunately, Goa allows providing arbi-
trary arguments to CMake via a cmake_args file. Setting CLICK_MODE=0 should do the
trick:

calculator$ echo ’-DCLICK_MODE=0’ > cmake_args
calculator$ goa build
...
CMake Error at tests/autopilot/cmake_install.cmake:49 (file):
file INSTALL cannot make directory
"/usr/lib/python3.11/site-packages/ubuntu_calculator_app": Permission
denied.

Call Stack (most recent call first):
tests/cmake_install.cmake:42 (include)
cmake_install.cmake:59 (include)

Apparently, there are some testing-related python files to be installed. Looking at sr-
c/CMakeFiles.txt again reveals that unsetting the INSTALL_TESTS options prevents this.

122

5.4 Porting Lomiri Calculator App

calculator$ echo ’-DINSTALL_TESTS=0’ >> cmake_args
calculator$ goa build

...
[calculator:cmake] -- Up-to-date: /.../goa-projects/calculator/var/build
/x86_64/install/bin/ubuntu-calculator-app

...
[calculator:cmake] -- Installing: /.../goa-projects/calculator/var/build
/x86_64/install/share/locale/zh_TW/LC_MESSAGES/com.ubuntu.calculator.mo

Very nice! You got past all build and installation errors. The environment for Ubuntu
UI Toolkit apps is set up by the ubuntu-ui-toolkit-launcher, which expects the application
files in its VFS. Since the VFS allows importing files from a tar archive, wrapping the
application files into a tar archive is the best option. You can achieve this by adding the
following line the artifacts file. For more details, please refer to goa help artifacts:

ubuntu-calculator-app.tar: install/

Next task is defining the runtime scenario.

Writing the package runtime In order to run the just built component with Goa or on
Sculpt, you need a corresponding package archive defining the runtime. Goa expects
the default package archive of a project to be named after the project, hence you need
to create a pkg/calculator directory.

calculator$ mkdir pkg/calculator

Since the runtime file for Ubuntu UI Toolkit applications comprises mostly boilerplate
code, you may use any existing application as blueprint and modify a few lines as
indicated by the inline comments:

123

5.4 Porting Lomiri Calculator App

<runtime ram="200M" caps="1000" binary="ubuntu-ui-toolkit-launcher">

<requires>
<gui/>
<rom label="mesa_gpu_drv.lib.so"/>
<gpu/>
<rtc/>
<timer/>
<report label="shape"/>

</requires>

<config>
<vfs>
<dir name="dev">
<log/> <gpu/> <rtc/>

</dir>
<dir name=".local"> <ram/> </dir>
<dir name="pipe"> <pipe/> </dir>
<tar name="qt5_declarative_qml.tar"/>
<tar name="qt5_dejavusans.tar"/>
<tar name="qt5_graphicaleffects_qml.tar"/>
<tar name="qt5_libqgenode.tar"/>
<tar name="qt5_libqjpeg.tar"/>
<tar name="qt5_libqsvg.tar"/>
<tar name="ubuntu-ui-toolkit_qml.tar"/>
<tar name="ubuntu-themes.tar"/>

<!-- change to you projects tar file here -->
<tar name="ubuntu-calculator-app.tar"/>

</vfs>
<libc stdout="/dev/log" stderr="/dev/log" pipe="/pipe" rtc="/dev/rtc"/>
<arg value="ubuntu-ui-toolkit-launcher"/>

<!-- add your startup QML file here -->
<arg value="/share/ubuntu-calculator-app/ubuntu-calculator-app.qml"/>

<env key="QT_SCALE_FACTOR" value="1"/>
</config>

<content>
<!-- adjust to your tar -->
<rom label="ubuntu-calculator-app.tar"/>

</content>
</runtime>

124

5.4 Porting Lomiri Calculator App

With this runtime file at pkg_calculator, you are able to execute goa run. Note that
Goa automatically executes all the required stages such as importing and building so
that you don’t need to worry about invoking these manually.

calculator$ goa run
...
[calculator] Error: Binary ’ubuntu-ui-toolkit-launcher’ not mentioned as

content ROM module.

You either need to add ’<rom label="ubuntu-ui-toolkit-launcher"/>’ to the
content ROM list
or add a pkg archive to the ’archives’ file from which to inherit.

Oops! We missed putting the Ubuntu UI Toolkit package archive into the archives file.
Let’s amend this:

calculator$ echo "ssumpf/pkg/ubuntu_ui_toolkit" > pkg/calculator/archives
calculator$ echo ’set version(ssumpf/pkg/ubuntu_ui_toolkit) 2024-06-03’ \
>> goarc
calculator$ goa run
...
[init -> calculator] QQmlComponent: Component is not ready
[init -> calculator] file:///[...]/ubuntu-calculator-app.qml:23

module "QtQuick.Controls.Suru" is not installed
[init -> calculator]
[init -> calculator] QThread: Destroyed while thread is still running
[init -> calculator] Error: raise(ABRT)
[init] child "calculator" exited with exit value -1

Alright, Goa was actually able to start the scenario, yet the component seems to miss
a QtQuick style module. The Suru style package is available at UBports1.

In order to make Suru available on Genode, you need to create a separate Goa project.

Porting QtQuick Controls Suru Style Following the steps already taken for the cal-
culator app, you create the project directory qt5_quickcontrols2_suru/ with the following
import file:

1https://gitlab.com/ubports/development/core/qqc2-suru-style

125

https://gitlab.com/ubports/development/core/qqc2-suru-style
https://gitlab.com/ubports/development/core/qqc2-suru-style

5.4 Porting Lomiri Calculator App

LICENSE := GPLv2
VERSION := main
DOWNLOADS := suru.git

URL(suru) := https://gitlab.com/ubports/development/core/qqc2-suru-style.git
REV(suru) := c0cf2007
DIR(suru) := src

These definitions create a clone of the specified git repository at the src/ subdirectory
during import. Create an empty artifacts file and give goa run a try:

qt5_quickcontrols2_suru$ touch artifacts
qt5_quickcontrols2_suru$ goa build
import download https://gitlab.com/ubports/[...]/qqc2-suru-style.git
import git Cloning into ’src’...
import update src
import generate import.hash
[qt5_quickcontrols2_suru] Error: could not find matching qt5_base API in depot

Goa detected that this is a qmake project and is therefore looking for a qt5_base API
archive. However, you haven’t defined this in the used_apis file yet. Let’s fix this:

qt5_quickcontrols2_suru$ echo "genodelabs/api/qt5_base" > used_apis

Note that you can benefit from the version information already specified in the cal-
culator’s goarc file. Goa reads all goarc files it finds along the path from the project
directory to your home directory. You may thus move the goarc file in the directory
hierarchy to share it between both projects.

qt5_quickcontrols2_suru$ goa build
...
/[...]/depot/genodelabs/api/qt5_base/[...]/include/QtCore/qglobal.h:45:12:

fatal error: type_traits: No such file or directory
45 | # include <type_traits>

| ^~~~~~~~~~~~~
compilation terminated.
make[1]: *** [Makefile.suru:1175: .obj/qquicksurustyle.o] Error 1
make[1]: *** Waiting for unfinished jobs....
make[1]: *** [Makefile.suru:1425: .obj/qquicksuruanimations.o] Error 1
make[1]: *** [Makefile.suru:1598: .obj/qquicksuruunits.o] Error 1
make[1]: *** [Makefile.suru:1370: .obj/qquicksurutheme.o] Error 1
make: *** [Makefile:47: sub-qqc2-suru-suru-pro-make_first] Error 2
[qt5_quickcontrols2_suru] Error: build via qmake failed:
child process exited abnormally

126

5.4 Porting Lomiri Calculator App

The build failed with the above error, which reminds us of adding genodelabs/api/stdcxx
and genodelabs/api/libc to the used_apis file. Note that this may require adding the
--rebuild argument to goa build to force Goa and qmake to re-create the build
directory:

qt5_quickcontrols2_suru$ echo "genodelabs/api/stdcxx" >> used_apis
qt5_quickcontrols2_suru$ echo "genodelabs/api/libc" >> used_apis
qt5_quickcontrols2_suru$ goa build --rebuild
...
/[...]/depot/genodelabs/api/qt5_base/[...]/include/QtGui/qopengl.h:141:13:

fatal error: GL/gl.h: No such file or directory
141 | # include <GL/gl.h>

| ^~~~~~~~~
compilation terminated.
make[1]: *** [Makefile.suru:1370: .obj/qquicksurutheme.o] Error 1
make: *** [Makefile:47: sub-qqc2-suru-suru-pro-make_first] Error 2
[qt5_quickcontrols2_suru] Error: build via qmake failed:
child process exited abnormally

Alright, this looks like we also need genodelabs/api/mesa.

127

5.4 Porting Lomiri Calculator App

qt5_quickcontrols2_suru$ echo "genodelabs/api/mesa" >> used_apis
qt5_quickcontrols2_suru$ goa build --rebuild
[qt5_quickcontrols2_suru:qmake] Info: creating stash file /[...]/.qmake.stash
/[...]/x86_64-pc-elf/bin/ld:
cannot find -l:ldso_so_support.lib.a: No such file or directory

/[...]/x86_64-pc-elf/bin/ld:
cannot find -l:qt5_component.lib.so: No such file or directory

/[...]/x86_64-pc-elf/bin/ld: cannot find
/[...]/libQt5Quick.lib.so: No such file or directory

/[...]/x86_64-pc-elf/bin/ld: cannot find
/[...]/libQt5QmlModels.lib.so: No such file or directory

/[...]/x86_64-pc-elf/bin/ld: cannot find
/[...]/libQt5Qml.lib.so: No such file or directory

/[...]/x86_64-pc-elf/bin/ld: cannot find
/[...]/libQt5QuickControls2.lib.so: No such file or directory

/[...]/x86_64-pc-elf/bin/ld: cannot find
/[...]/libQt5QuickTemplates2.lib.so: No such file or directory

/[...]/x86_64-pc-elf/bin/ld: cannot find
/[...]/libQt5Quick.lib.so: No such file or directory

/[...]/x86_64-pc-elf/bin/ld: cannot find
/[...]/libQt5QmlModels.lib.so: No such file or directory

/[...]/x86_64-pc-elf/bin/ld: cannot find
/[...]/libQt5Qml.lib.so: No such file or directory

collect2: error: ld returned 1 exit status
...

There are a bunch of library files missing. Goa creates these from the symbol files
found in the used API archives. ldso_so_support is provided by genodelabs/api/so,
qt5_component is provided by genodelabs/api/qt5_component, and the Qt5 li-
braries are provided by ssumpf/api/qt5_declarative and ssumpf/api/qt5_quickcontrols2.
The resulting used_apis file should therefore look like this:

genodelabs/api/qt5_base
genodelabs/api/stdcxx
genodelabs/api/libc
genodelabs/api/mesa
genodelabs/api/so
genodelabs/api/qt5_component
ssumpf/api/qt5_declarative
ssumpf/api/qt5_quickcontrols2/2023-05-26

Note that Goa allows specifying version information directly in the used_apis file as
done for ssumpf/api/qt5_quickcontrol2.

After executing goa build successfully, you may have a look at the build directory at
var/build/x86_64 to identify the build artifacts. For QML modules, we need the qml files

128

5.4 Porting Lomiri Calculator App

in a tar archive to be able to populate the ubuntu-ui-toolkit-launcher’s VFS. Moreover,
we need the *.lib.so file. Your artifacts file should look like this:

qt5_quickcontrols2_suru_qml.tar/qt/: qmake_root/qml
qmake_root/qml/QtQuick/Controls.2/Suru/libqtquickcontrols2surustyleplugin.lib.so

Let’s give goa build another try:

qt5_quickcontrols2_suru$ goa build
[qt5_quickcontrols2_suru] Error: missing symbols file

’libqtquickcontrols2surustyleplugin’

You can generate this file by running ’goa extract-abi-symbols’

Goa recognized that you are building a library and therefore expects a symbol file.
Let’s follow the advice given by Goa:

qt5_quickcontrols2_suru$ goa extract-abi-symbols
The following library symbols file(s) were created:
> ‘symbols/libqtquickcontrols2surustyleplugin

Please review the symbols files(s) and add them to your repository.

After removing the comment from the generated symbol file, you should be able to
run goa build successfully. In a last step, you need to export the resulting archive into
your depot. Let’s assume your depot user is “john” and that you are using ~/depot as a
shared depot directory:

qt5_quickcontrols2_suru$ goa export --depot-user john --depot-dir ~/depot
[qt5_quickcontrols2_suru] Error: cannot export src archive because the

license is undefined

Create a ’LICENSE’ file for the project, or
define ’set license <path>’ in your goarc file, or
specify ’--license <path>’ as argument.

Fortunately, Goa reminds us of adding a LICENSE file. Since the file is already
present in the src/ directory, you point Goa to it using this goarc line:

set license src/LICENSE.GPL-2

129

5.4 Porting Lomiri Calculator App

Let’s run goa export again:

qt5_quickcontrols2_suru$ goa export --depot-user john --depot-dir ~/depot
[qt5_quickcontrols2_suru] Error: version for

archive john/src/qt5_quickcontrols2_suru undefined

Create a ’version’ file in your project directory, or
define ’set version(jschlatow/src/qt5_quickcontrols2_suru) <version>’
in your goarc file.

Goa features a bump-version command to create/update the version file. It simply
sets the version to the current date or appends/increases a letter suffix if the version
was already set to this date.

qt5_quickcontrols2_suru$ goa bump-version
qt5_quickcontrols2_suru$ goa export --depot-user john --depot-dir ~/depot
[qt5_quickcontrols2_suru] exported .../src/qt5_quickcontrols2_suru/...
[qt5_quickcontrols2_suru] exported .../bin/x86_64/qt5_quickcontrols2_suru/...

All done, back to the calculator project.

Revising the package runtime In order to utilize the just created Suru module, you
need to add the tar file to the calculator runtime. More precisely, add a <tar> node to
the vfs and a <rom> node to the list of content ROM modules.

<config>
<vfs>
...
<tar name="qt5_quickcontrols2_suru_qml.tar"/>
...

</vfs>
</config>

<content>
...
<rom label="qt5_quickcontrol2_suru_qml.tar"/>
...

</content>

Before giving goa run a go, don’t forget to add the corresponding depot archive to
the archives file.

130

5.4 Porting Lomiri Calculator App

calculator$ echo "john/src/qt5_quickcontrols2_suru" >> pkg/calculator/archives
calculator$ goa run
...
[calculator] Error: no version defined for depot

archive ’john/src/qt5_quickcontrols2_suru’

Goa is unable to find any version information for the archive. Instead of adding the
version definition to a goarc file, you may use Goa’s ability to locate the corresponding
project directory in order to find its version information. By default, Goa uses the work-
ing directory as a starting point for locating those dependencies. This can be changed
by adding a --search-dir argument or by setting the search_dir variable in a goarc
file. Let’s opt for the latter and also set the depot_dir variable to point Goa to the depot
directory to which you exported the qt5_quickcontrols2_suru project.

calculator$ echo "set search_dir ../" >> goarc
calculator$ echo "set depot_dir ~/depot" >> goarc
calculator$ goa run
...
[init -> calculator] Error: ROM-session creation failed

(label="libqtquickcontrols2surustyleplugin.lib.so",...)
[init -> calculator] Error: could not open ROM session

for "libqtquickcontrols2surustyleplugin.lib.so"
[init -> calculator] QQmlComponent: Component is not ready
...

The library file is provided by the qt5_quickcontrols2_suru archive, however, the run-
time error indicates that we missed adding it to the content section of the runtime file.

<content>
...
<rom label="libqtquickcontrols2surustyleplugin.lib.so"/>
...

</content>

Giving goa run another shot reveals another issue:

calculator$ goa run
...
[init -> calculator] QSqlDatabase: QSQLITE driver not loaded
[init -> calculator] QSqlDatabase: available drivers:
[init -> calculator] Warning: chmod: chmod not implemented
[init -> calculator] QSqlQuery::prepare: database not open
[init -> calculator] file:///[...]/engine/CalculationHistory.qml:82:

Error: Driver not loaded Driver not loaded

131

5.4 Porting Lomiri Calculator App

Apparently, we need a database driver. Fortunately, qt5_libsqlite.tar and libqsqlite.lib.so
are part of the qt5_base binary archive. Let’s add them to the runtime file:

<config>
<vfs>
...
<tar name="qt5_libqsqlite.tar"/>
...

</vfs>
</config>

<content>
...
<rom label="qt5_libqsqlite.tar"/>
<rom label="libqsqlite.lib.so"/>
...

</content>

Finally, goa run is able to start up the calculator app successfully. The fb_sdl window
may remain white though. A random mouse click into the window, however, lets the
GUI pop up as shown below. That’s good enough for now.

Figure 14: Calculator app running on base-linux with Goa

Unfortunately, you will notice substantial delays when interacting with the GUI due
to the lack of hardware acceleration with Goa on Linux. Please refer to Section 4.4 for
running Goa scenarios on a remote Sculpt target to mitigate this limitation.

The complete code is available in Johannes’ goa-projects repository.

132

5.4 Porting Lomiri Calculator App

Ported Lomiri Calculator App

https://github.com/jschlatow/goa-projects/tree/master/lomiri

133

https://github.com/jschlatow/goa-projects/tree/master/lomiri

	Introduction
	Getting started with Goa
	Installation
	A first example, using a plain old Makefile
	A second example, using CMake
	Running the scenario on Sculpt OS

	Foundations
	Genode's init component
	Component API
	Native Genode components
	Libc components
	POSIX components

	C runtime and virtual file system
	Libc configuration
	VFS configuration
	VFS plugins

	Networking
	TCP/IP stacks
	NIC Router
	Example: Virtual networking with Goa
	Example: Cascaded NIC routers

	Package management
	Runtime configuration
	Graphical User Interfaces
	SDL
	Qt (5/6)
	Mobile SDK based on Ubuntu/Lomiri UI Toolkit
	Light and Versatile Graphics Library (LVGL)

	Development & Debugging
	Adding debug info files
	Using backtraces
	Debugging with Goa on base-linux
	Using Sculpt as a remote test target
	Further reading
	Using a VNC server on a remote test target
	On-target debugging with GDB
	Performance analysis

	Tutorials
	Sticking together a little Unix
	Exporting and publishing
	Writing a VFS plugin for network-packet access
	Porting Lomiri Calculator App

